24 resultados para Computadoras digitales electronicas-Instrucción programada
Resumo:
El presente trabajo consistió en caracterizar los significados elementales y sistémicos a los protocolos de respuestas dadas por un estudiante sobre ecuaciones de segundo grado y los puestos de manifiesto, en relación al mismo tema, por los autores del libro de texto que se utilizó de apoyo a la enseñanza y aprendizaje. Para tal fin aplicamos la técnica del análisis semiótico, generada del modelo ontológico semiótico de la cognición e instrucción matemática (Godino, 2003 y Godino y Arrieche, 2001), que nos permitió determinar el significado institucional de referencia y el significado personal declarado. También se identificaron conflictos semióticos, es decir; discordancias entre los significados personales e institucionales.
Resumo:
Los esquemas lógico-matemáticos desarrollados durante el crecimiento y formación dentro de un sistema educativo podrían influir y marcar cierta evolución sobre los sesgos del pensamiento probabilístico de los estudiantes, aun cuando éstos no reciban instrucción formal en probabilidades. Esta investigación ha sido realizada con 152 estudiantes de nivel medio entre 13 y 17 años. Los objetivos de la misma han sido: (a) identificar y analizar la influencia de esquemas lógico-matemáticos sobre sesgos intuitivos en juicios bajo incerteza cuando no existe conocimiento probabilístico formal y (b) analizar la evolución etaria de estos procesos. La metodología utilizada es mixta. Los instrumentos han sido cuestionarios con preguntas orientadas a la detección de algunos sesgos intuitivos y los esquemas actuantes.
Resumo:
La enseñanza y el aprendizaje formalizado de los números irracionales en la formación inicial de profesores de secundaria son problemáticos. Un análisis histórico y epistemológico de la noción de número irracional, sirve de base para enmarcar un estudio empírico, con estudiantes para profesor, que indaga el proceso de construcción de la noción de cardinalidad del conjunto de los números irracionales y la densidad de en R\Q en R. El estudio se realiza por medio de algunos elementos teóricos del enfoque ontosemiótico del conocimiento de y de la instrucción matemáticos. La identificación, por parte del estudiante, de la cardinalidad de conjuntos infinitos, hace posible la emergencia de fenómenos relativos a los cardinales transfinitos, determinándose diferentes tipos de errores y conflictos cognitivos.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Diversas investigaciones se interesan por la inserción de los “conocimientos previos” de los estudiantes en el proceso de aprendizaje de las matemáticas, considerándolos como bases iniciales de significados que deben ser sustituidos por medio de la instrucción “formal”. A diferencia de lo anterior, el propósito de la investigación es legitimar los saberes que se encuentran en el cotidiano. Para ello, se conforma, desde la socioepistemología, la categoría del cotidiano del ciudadano que resalta una función social particular del conocimiento matemático. Para la conformación de la evidencia empírica, se da cuenta de los usos de las gráficas en talleres de divulgación científica, evidenciando cómo el cotidiano brinda elementos funcionales que podrían conformar parte de un rediseño del discurso matemático escolar.
Resumo:
En este capítulo, presentamos el proceso de diseño e implementación de la unidad didáctica del cuadrado de un binomio para grado octavo. Iniciamos con la descripción de los análisis previos (análisis de contenido, análisis cognitivo y análisis de instrucción) a la implementación que permitieron producir el primer diseño de la unidad didáctica del tema. Seguidamente, detallamos el trabajo realizado en el análisis de actuación, con el cual empezamos a analizar y a revaluar aspectos del diseño implementado de acuerdo con los resultados obtenidos por los estudiantes. Justi camos el nuevo diseño de la unidad didáctica con base en los resultados de esos análisis. Por último, concluimos con algunas re exiones sobre la experiencia vivida a lo largo del proceso.
Resumo:
El análisis de actuación corresponde al cuarto y último de los análisis que componen el análisis didáctico. Con él se cierra un ciclo de análisis y se enlaza con el comienzo de un nuevo ciclo. El interés de este módulo se centra en la planificación del seguimiento del aprendizaje de los escolares y del propio proceso de enseñanza durante la implementación de lo planificado en el análisis de instrucción, con objeto de comparar las previsiones que han hecho en dicha planificación con lo que sucederá cuando ésta se lleve a cabo en el aula. Esta comparación redundará en ajustes puntuales de la planificación durante el mismo proceso de instrucción, así en como reformulaciones globales, de cara a un nuevo ciclo de análisis didáctico.
Resumo:
Este artículo se basa en que las nuevas tecnologías representan una alternativa para la enseñanza y el aprendizaje de las matemáticas; las calculadoras simples, las calculadoras gráficas y las computadoras han ido desplazando a la tiza y a la pizarra, pues los temas pueden ser mostrados con mayor dinamismo y agilidad. Sin embargo, un problema muy común entre los profesores es que cuentan con la tecnología para innovar, pero no saben como hacerlo, en el artículo se sugieren algunas formas de utilizar la tecnología para introducir el concepto de derivada, algunos modos de aproximarla y, por último, cómo obtener reglas generales.
Resumo:
Aún si su trabajo parece no estar vinculado con la matemática, Mathematica puede ser de su interés. Con este recurso el arduo trabajo del cálculo -numérico o simbólico- resulta cosa del pasado, el desarrollo de materiales didácticos tiene nuevas y revolucionarias herramientas, las aplicaciones de modelos matemáticos pueden producir resultados sin ocuparse de la implementación computacional de complicados algoritmos matemáticos, en suma, con las computadoras y Mathematica se multiplican las capacidades para entender, desarrollar y aplicar las matemáticas y ciencias afines.