18 resultados para PNA
Resumo:
En este documento presentamos algunos de los resultados de un estudio que aporta evidencias de la capacidad de los alumnos de tercer grado para desarrollar pensamiento relacional y para comprender el significado del signo igual trabajando en un contexto de igualdades numéricas.
Resumo:
La comprensión del conocimiento matemático constituye un objeto de investigación de interés creciente en Educación Matemática. No obstante, su elevada complejidad hace que los avances más recientes aún resulten insuficientes y reclama la necesidad de ir adoptando enfoques más operativos y menos preocupados por el estudio directo de sus aspectos internos. En tal sentido, se presentan aquí las bases de una aproximación centrada en los efectos observables de la comprensión, que utiliza el análisis de comportamientos y respuestas adaptadas a situaciones expresamente planificadas derivadas del análisis fenómeno-epistemológico del conocimiento matemático. La operatividad de la propuesta se ilustra con el estudio realizado sobre el algoritmo estándar escrito para la multiplicación de números naturales.
Resumo:
En este trabajo precisamos el significado de los términos capacidad y competencia en el marco de un programa de formación inicial de profesores de matemáticas de secundaria. Describimos brevemente las bases de ese programa y, a continuación, presentamos y ejemplificamos un procedimiento mediante el cual los futuros profesores reflexionan en torno al aprendizaje de los escolares y usan esas nociones cuando abordan la planificación de una unidad didáctica.
Resumo:
En este artículo se pone de manifiesto la presencia de los fenómenos de aproximación organizados por una definición de límite en el caso de las sucesiones de números reales y de las funciones reales de una variable real. La exposición incluye la caracterización de tales fenómenos, una descripción del análisis comparativo desarrollado en base a ellos entre dos definiciones formales de límite de sucesión y función, y una síntesis del estudio llevado a cabo sobre una muestra intencional de libros de texto de matemáticas.
Resumo:
Pattern generalization is considered one of the prominent routes for in-troducing students to algebra. However, not all generalizations are al-gebraic. In the use of pattern generalization as a route to algebra, we —teachers and educators— thus have to remain vigilant in order not to confound algebraic generalizations with other forms of dealing with the general. But how to distinguish between algebraic and non-algebraic generalizations? On epistemological and semiotic grounds, in this arti-cle I suggest a characterization of algebraic generalizations. This char-acterization helps to bring about a typology of algebraic and arithmetic generalizations. The typology is illustrated with classroom examples.
Resumo:
En este artículo se presentan los resultados de un proyecto de investiga-ción sobre la comunicación entre familias y escuelas. El objetivo es co-nocer tanto los contenidos de matemáticas enseñados en la escuela, co-mo establecer puentes de diálogo entre escuelas y familias, a fin de que los estudiantes acaben mejorando su rendimiento en matemáticas. Co-menzamos con una contextualización. Luego, se presenta el estudio y la metodología utilizada. A continuación se discuten parte de los resulta-dos obtenidos, que destacan el interés de la conexión entre las familias y los centros, especialmente en los institutos. Se concluye con aportacio-nes a la formación del profesorado de matemáticas.
Las igualdades incorrectas producidas en el proceso de traducción algebraico: un catálogo de errores
Resumo:
Propongo un catálogo para los errores que puedan encontrarse al realizar el proceso de traducción algebraico. El catálogo consta de tres categorías: errores en el uso de letras, errores en la construcción de expresiones algebraicas y errores en la construcción de la igualdad. Constaté la validez del catálogo con las igualdades incorrectas producidas por 258 estudiantes de bachillerato que trabajaron 13 problemas. Encontré que las producciones persistentes dan cuenta de una parte sustantiva del error total y que estas producciones contienen errores de las categorías antes citadas. Además, determinados errores se podrían asociar con tipos de problemas.
Resumo:
En este trabajo analizamos el conocimiento geométrico sobre polígonos de estudiantes para profesor peruano. Este conocimiento se describe en función de las capacidades que evidencian. Hemos determinado dichas capacidades con base en el modelo de razonamiento de Van Hiele y en consideraciones sobre el aprendizaje geométrico. Mostramos los resultados generales del grupo de alumnos, así como el estudio de dos casos.
Resumo:
We present an analysis of the inductive reasoning of twelve Spanish secondary students in a mathematical problem-solving context. Students were interviewed while they worked on two different problems. Based on Polya´s steps and Reid’s stages for a process of inductive reasoning, we propose a more precise categorization for analyzing this kind of reasoning in our particular context. In this paper we present some results of a wider investigation (Cañadas, 2002).
Resumo:
En este trabajo describimos los patrones y la generalización que llevan a cabo 359 estudiantes de 3º y 4º de Educación Secundaria Obligatoria en la resolución del problema de las baldosas. Prestamos especial atención a los tipos de patrones identificados, a la forma en que los estudiantes expresan la generalización y, mediante la descripción de las estrategias inductivas, presentamos algunas características de la generalización referentes a los elementos y a los sistemas de representación utilizados.
Resumo:
The study of linear relationships is foundational for mathematics teaching and learning. However, students’ abilities connect different representations of linear relationships have proven to be challenging. In response, a computer-based instructional sequence was designed to support students’ understanding of the connections among representations. In this paper we report on the affordances of this dynamic mode of representation specifically for students with learning disabilities. We outline four results identified by teachers as they implemented the online lessons.
Resumo:
Llamamos problemas de Fermi a aquellos problemas que, siendo de difícil resolución, admiten una aproximación a su solución a base de romper el problema en partes más pequeñas y resolverlas por separado. En este artículo presentamos los problemas de estimación de magnitudes no alcanzables (PEMNA) como un subconjunto de los problemas de Fermi. A partir de los datos recopilados en un estudio hecho con alumnos de 12 a 16 años, caracterizamos las distintas estrategias de resolución propuestas por estos y discutimos sobre la potencialidad de estas estrategias para resolver los problemas con éxito.
Resumo:
In this paper, we report some findings from an investigation of a topic related to affect and mathematics which is not well-represented in the literature. For some mathematicians, mathematics itself is a source of security in an uncertain world, and we investigated this feeling and experience in the case of 19 adult mathematicians working in universities and schools in Greece. The focus reported here is on ways that a relationship with mathematics offers a sense of permanence and stability on the one hand, and an assurance of novelty and progress on the other.
Resumo:
Este trabajo trata sobre el concepto de función, básico en el Análisis Matemático, y, en particular, su representación gráfica. Nos centramos en aspectos relacionados con la forma; es decir, el trazado de dicha representación. Analizamos las representaciones gráficas de funciones existentes en los cuadernos de matemáticas de estudiantes de varias aulas de 1º de Bachillerato. Encontramos deficiencias en el trazado de gráficas que se repiten en un alto número de estudiantes, relacionadas con los conceptos de función y asíntota, con el uso de las escalas en los ejes del diagrama cartesiano y con las características de algunas funciones. Además, discutimos sobre las limitaciones técnicas y las dificultades didácticas y cognitivas que pueden dar lugar a su aparición y hacemos algunas recomendaciones didácticas al respecto.
Resumo:
El creciente uso de software de geometría dinámica 3-dimensional plantea nuevas cuestiones a los investigadores en Educación Matemática. Para aportar información sobre el aprendizaje de geometría espacial en esta disciplina mediante entornos de geometría dinámica 3-dimensional, y sobre posibles fortalezas y debilidades de tales entornos, presentamos resultados de una investigación experimental en la que se analiza cómo un estudiante de altas capacidades matemáticas aprende conceptos relativos a paralelismo entre rectas y/o planos en el espacio mediante la resolución de actividades en un entorno de Cabri 3D.