16 resultados para Ortiz Arrigos de Montoya, Celia
Resumo:
En este trabajo se reportan los resultados obtenidos con 39 estudiantes del Instituto Santa María Goretti de Bucaramanga, institución que viene participando en el proyecto “Incorporación de Nuevas Tecnologías en el Currículo de Matemáticas de la Educación Básica y Media de Colombia” desde el año 2002, quienes dieron solución a un problema de una carrera de fórmula 1, donde Juan Pablo Montoya sale de pits con una aceleración de 4 m/seg2 y en ese mismo instante pasa Michael Schumacher con una velocidad constante de 252 Km/hora. Este problema fue simulado en Cabrí Geometry en una pista circular, para el estudio de las funciones lineal y cuadrática. El trabajo con la simulación permitió que las estudiantes identificaran con mayor precisión las variables y no variables y que a través de la toma de datos y análisis de ellos llegaran a obtener diferentes representaciones (numérica, grafica, tabular, algebraica) de las funciones lineal y cuadrática. Además de relacionar los conceptos aprendidos en el estudio del movimiento uniforme y uniformemente acelerado.
Resumo:
Se presenta un avance de una investigación de tipo cualitativo en la cual se busca identificar las características de razonamiento presentadas en estudiantes de grado quinto al momento de enfrentarse a situaciones de tipo variacional; dichas características se discuten a la luz del marco conceptual para la covariación propuesto por Carlson, Jacobs, Coe, Larsen, y Hsu (2003). Desde las situaciones, se desprenden algunas implicaciones y recomendaciones para su implementación en el aula de clase, específicamente para un acercamiento a nociones como: función y tasa de variación, las cuales se encuentran en las bases propias del razonamiento covariacional y pueden abordarse desde los primeros grados de escolaridad como una manera de crear cimientos en la comprensión de los conceptos más relevantes del cálculo.
Resumo:
tema en el contexto educativo colombiano, llevan a que dos profesores de matemáticas de educación básica y media, se den a la tarea de diseñar y desarrollar una propuesta para la superación de sesgos en el razonamiento probabilístico de sus estudiantes. De esta manera, en el marco de la investigación-acción, se recoge la experiencia y reflexión de tres implementaciones de aula consecutivas: La primera con estudiantes de grado décimo, cuyo énfasis estuvo dado en el enfoque clásico de probabilidad, que llevó a que los estudiantes no tuvieran cambios significativos en sus argumentaciones respecto a los fenómenos de probabilidad; la segunda con estudiantes de grado séptimo, donde el enfoque fue netamente experimental, convirtiéndose en un obstáculo para desarrollar procesos de institucionalización del saber, que permitieran a los estudiantes formalizar algunos conceptos. Las reflexiones suscintas a esta experiencia llevaron al desarrollo de una tercera, también con estudiantes de grado séptimo, pero en otra institución, donde se construyó de manera conjunta y horizontal con los estudiantes una situación problema abierta a los dos enfoques de probabilidad (clásico y experimental) que permitió desarrollar las actividades de acuerdo al avance de cada grupo en el proceso de resolución. De ésta manera se contribuyó en forma significativa a la superación de sesgos probabilísticos, y se consolidó para nosotros un instrumento modelo para la enseñanza de las matemáticas.
Resumo:
En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión En esta comunicación reportamos algunos avances de una investigación en la que pretendemos que los estudiantes reconozcan variables propias de un contexto cafetero para la constitución de sus propios modelos matemáticos en un proceso de modelación. La investigación se viene adelantando con metodología cualitativa puesto que nos posibilita hacer un estudio detallado en el contexto, debido a que posee un fuerte componente descriptivo que permite a través de la recolección de datos una profunda y significativa comprensión.
Resumo:
La enseñanza de la astronomía podría en el entorno educativo colombiano reforzar los conceptos matemáticos y físicos durante el proceso de enseñanza aprendizaje. Se pretende con la realización de talleres en forma de guías de trabajo, enfatizar en algunos conceptos con relación a la astronomía básica y de posición, donde los estudiantes aprenderán y relacionaran los comienzos de la observación con las ciencias exactas actuales, en el momento de desarrollar las actividades.
Resumo:
Para la Educación Matemática, el uso de la tecnología computacional hoy, reviste particular interés investigativo en lo que respecta al aprendizaje de las matemáticas de nuestros niños y niñas en las instituciones escolares; dado que, la tecnología computacional posibilita el estudio (tratamiento) de los objetos matemáticos y sistemas de representación y las representaciones semióticas que constituyen un elemento básico para entender la construcción del conocimiento de los estudiantes (Lupiañez, Moreno,1999) y desde las actividades cognitivas de representación inherentes a la semiosis: formación, tratamiento y conversión, de registros semióticos (Duval,1999).
Resumo:
La propuesta de innovación surge por las dificultades de los estudiantes en el aprendizaje de la geometría proporcional, en particular, en la propiedad Potencia de un punto exterior a la circunferencia.Para su diseño se considera como referente teórico, la articulación propuesta por Montoya (2010), complemento entre “Paradigmas geométricos” de Houdement y Kuzniak y los Procesos de Pruebas de Balacheff. En base a antecedentes obtenidos de un estudio epistemológico del objeto, se diseñan distintas pruebas que propician el tránsito entre los paradigmas de la geometría natural (GI ) y la geometría axiomática natural (GII) , aportando así en el aprendizaje de la propiedad en estudio.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
La teoría de instrucción matemática significativa basada en el modelo ontológico -semiótico de la cognición matemática denominado Teoría de las Funciones Semióticas (TFS ) proporciona un marco unificado para el estudio de las diversas formas de conocimiento matemático y sus respectivas interacciones en el seno de los sistemas didácticos (Godino, 1998 ). Presentamos un desarrollo de esta teoría consistente en la descomposición de un objeto, para nuestro modelo, la Continuidad, en unidades para identificar entidades y las funciones semióticas que se establecen, en el proceso de enseñanza y aprendizaje en una institución escolar, implementando un ambiente de tecnología digital (calculadora graficadora TI-92 Plus y/o Voyage 200).
Resumo:
Este trabajo complementa otras investigaciones que evidencian las “disfunciones escolares” que el operador raíz cuadrada presenta en el tránsito del contexto aritmético al algebraico y del algebraico al funcional. Juárez (2007) muestra cómo estudiantes de bachillerato en el estado de Guerrero, México, no logran detectar la problemática que se genera al considerar a las operaciones de potenciación y radicación como inversas sin considerar ninguna restricción. En este trabajo mostramos el rediseño de la secuencia de actividades de Juárez y los resultados de su aplicación a estudiantes de bachillerato en un centro de estudios científicos y tecnológicos (CECyT) del Instituto Politécnico Nacional (IPN) en el Distrito Federal, México. Mostraremos la nueva secuencia y las consideraciones que hicimos para modificarla, así como las respuestas de algunos estudiantes. Mostraremos que el considerar a las operaciones de potenciación y radicación como inversas permea en el conocimiento de los estudiantes.
Resumo:
En esta comunicación presentamos la forma como resumimos todos los posibles caminos de aprendizaje considerados para el desarrollo de dos tareas. Las dos tareas pretenden contribuir al logro de un objetivo de aprendizaje: resolver problemas que implican permutaciones sin repetición. Exponemos algunas expectativas de aprendizaje planteadas en términos de capacidades y errores y organizamos esas expectativas por medio de caminos de aprendizaje. Analizamos los caminos de aprendizaje resumiendo las estrategias de solución mediante secuencias de capacidades. Finalmente, analizamos la contribución de las tareas al logro del objetivo.
Resumo:
Este trabajo es parte de una investigación que estudia prácticas de modelación en diversos escenarios con la intención de analizar las herramientas que surgen en este proceso. Se reportan experiencias con estudiantes, de nivel medio superior y superior de México y Chile, respectivamente, que participaron en puestas en escena de un diseño de aprendizaje basado en la modelación lineal. Sus producciones muestran argumentos, herramientas y procedimientos que utilizan al modelar, su análisis presenta invariantes y particularidades que exhiben el rol del estudiante en cada escenario. El trabajo se enmarca en la socioepistemología como perspectiva teórica.
Resumo:
Este capítulo presenta el trabajo final de la concentración en Educación Matemática de la Maestría en Educación de la Universidad de los Andes de un grupo de cuatro profesores de matemáticas. El informe describe las actuaciones para el diseño, implementación y evaluación de la unidad didáctica relacionada con permutaciones sin repetición. Este diseño se fundamenta en el modelo de análisis didáctico que constituyó el contenido central de la maestría.
Resumo:
Presentamos aquí una investigación sobre concepciones aleatorias en estudiantes de secundaria. Las respuestas de 277 estudiantes de dos grupos, con edades de 14 y 17 años, sirven para identificar las propiedades asociadas a secuencias aleatorias y deterministas. En ellas encontramos la capacidad de los alumnos para reconocer modelos matemáticos subyacentes en las secuencias de los resultados aleatorios y su utilización en los juicios sobre aleatoriedad. Por ellos sugerimos al final algunas implicaciones para la enseñanza de la probabilidad en estos niveles iniciales.
Resumo:
Este articulo lo presento como humilde homenaje a Rafael Montoya (profesor, matemático, ajedrecista, amigo). Nos conocimos jóvenes estudiantes, en Ceuta y compartimos durante muchos años largas horas jugando al ajedrez; resolviendo problemas de matemáticas, de ajedrez o de ingenio; preparando oposiciones; o, simplemente, charlando, conviviendo.