18 resultados para Espacio, tiempo, ideología, movimiento, tempespacialidad.
Resumo:
Esta investigación de corte cualitativo tiene el objetivo de estudiar cómo un grupo de estudiantes mexicanos de 16-18 años logra significar la relación entre las gráficas cartesianas de distancia-tiempo, velocidad-tiempo y aceleración-tiempo al interactuar en un entorno digital. Nuestra interpretación se basa en asumir que el conocimiento resulta de las acciones del sujeto cognoscente que se acerca a su objeto de conocimiento provisto de artefactos culturales de mediación. Las gráficas cartesianas atadas a la animación promueven en los estudiantes una actitud para expresar y explorar sus ideas a través de las representaciones simbólicas que ellos mismos producen. Los resultados sugieren que este tipo de experiencias puede ayudar a construir una sólida base para acceder a las ideas del Cálculo.
Resumo:
En los problemas clásicos, la proporcionalidad aparece como una relación exacta en el sentido que compara magnitudes bien determinadas y con medidas que se suponen conocidas exactamente. Es la manera como opera la llamada "regla de tres" de la escuela elemental. Así, en el movimiento uniforme, el espacio recorrido durante el tiempo fijo, es proporcional a la velocidad y para una velocidad determinada, es proporcional al tiempo. También e precio de una determinada mercadería es proporcional a la medida de la misma (longitud, si se trata de telas o alambres; peso, si se trata de azúcar patatas; volumen, si de líquidos como el vino o aceite). En las clases de nivel medio conviene poner abundantes ejemplos de magnitudes proporcionales, como las que acabamos de mencionar y otros de los que no lo son. En general, es conveniente hacer la representación gráfica de una magnitud en función de la otra, para ver si es o no una recta.
Resumo:
En este artículo se resuelve un problema de astronomía mediante la utilización de la trigonometría elemental y del espacio euclideo tridimensional. Se aspira tener una idea de cómo varía la luz solar en los solsticios a lo largo de las latitudes de nuestro planeta, de polo a polo, y se concluye con un programa informático y una tabla para las latitudes de varias ciudades del mundo.
Resumo:
Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?
Resumo:
Este estudio se centra en el diseño e implementación de tareas que permitan a los futuros profesores identificar el talento matemático de los alumnos, al mismo tiempo que potencian en ellos su desarrollo. El trabajo fue realizado con estudiantes de entre 7 y 11 años, que participaron en cursos extraordinarios de matemática. La tarea se basó en la teoría de situaciones de Brosseau, con algunos conceptos de combinatoria y con movimientos en el espacio. En su desarrollo se utilizó material concreto como medio facilitador hacia la abstracción. Los futuros profesores debían observar la actividad de los alumnos y registrar todos los acontencimientos que, bajo su perspectiva, intervenían el la resolución de la tarea. En los resultados mostramos la potencialidad del trabajo desarrollado, cuáles fueron las características más destacadas que se potenciaron en los alumnos y cuáles fueron las identificadas por los futuros profesores.
Resumo:
Este trabajo está orientado al estudio de las representaciones gráficas de funciones a fin de construir un módulo para docentes que contenga actividades estratégicamente diseñadas en cuanto a metodología y didáctica, de tal forma que los educandos puedan construir los conceptos de forma correcta, siendo conscientes que en el fondo hay un gran objeto matemático, con un enorme campo de aplicación: la función. Para ello, se desarrolla el trabajo de campo en la institución educativa Conrado González Mejía, la cual está ubicada en el barrio Robledo de la ciudad de Medellín.
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
El artículo consta de tres partes: en la primera exponemos los problemas planteados en la Primera Fase del Torneo de Matemáticas para 2º de la ESO y resolvemos alguno de ellos; en la segunda parte enunciamos los ejercicios propuestos en el Torneo de Primaria; y por último planteamos varios problemas de diferentes fuentes, uno de la colección de "Problemas de los abuelos". Solucionamos el que nos ha llegado como propuesto en una oposición para ser resuelto sin aplicar un método algebraico, resolución que debía ser entendible por alumnos de niveles elementales. Para las soluciones hemos aplicado ecuaciones, gráficos del parte-todo o tablas de doble entrada, como ya es habitual, orientando al provecho que se puede obtener en el aula con las diversas metodologías.
Resumo:
Con el objeto de mejorar la apropiación de herramientas para el pensamiento variacional, el presente trabajo presenta indagaciones realizadas en torno a gráficas de variación en el tiempo, en especial aquellas de distancia en el tiempo. Entendemos que construir aprendizajes implica introducir al estudiante en prácticas matemáticas que potencien las nociones a construir, por ello reconocer las situaciones en que las gráficas distancia‐tiempo y, en particular el tiempo, son necesarios para comunicar y trabajar concambios, se torna central. El presente reporte da cuenta de experiencias exploratorias con base en la necesidad de comunicar cambios, recurriendo a representaciones gráficas, de modo de constatar en qué situaciones se representa al tiempo en tales gráficas.
Resumo:
Las distancias entre saberes de la vida diaria, los escolares y los eruditos, afincan sus raíces en matrices de sentido de epistemes propias. Tal ocurre para las nociones de velocidad y tiempo de la matemática del cambio. Una didáctica crítica es desafiada a deconstruirlos, desentrañando su presencia en el sentido común del estudiantado y en los saberes escolares de los que debe apropiarse éste, de modo de proporcionar antecedentes para diseñar y validar puentes de diálogo entre estos cuerpos de saberes. Para colaborar en esta línea, se presentan matrices de sentido para las nociones de velocidad y de tiempo obtenidas en investigaciones de la Matemática del Cambio.
Motivación socioepistemológica de la función senoidal a través del movimiento circular como metáfora
Resumo:
En este trabajo se presenta una secuencia didáctica cuyo marco teórico es la socioepistemología, en la que se toma en cuenta la dimensión didáctica y cognitiva. Para realizarla, usamos una metáfora que nos permita identificar a través de una actividad experimental, al manipular una cuerda y usando una torna mesa, los principales elementos de la función seno.
Resumo:
Tres semanas después de recibir la enseñanza de probabilidad, diez estudiantes de un bachillerato tecnológico fueron seleccionados para desarrollar una actividad extra-aula experimental, fundamentada en la aproximación de la frecuencia relativa a la probabilidad. Se utilizaron hojas de control y se videograbó la sesión. Inicialmente los estudiantes lanzaron volados individualmente y después se organizaron en equipos para analizar sus datos. En la interacción social en dos equipos se manifestó la confusión entre los conceptos de frecuencias relativa y absoluta, y se observó la subordinación de ideas de los miembros ante un líder conceptual. Los estudiantes en un inicio confundieron los valores de la variable aleatoria con el espacio muestra, lo cual corrigieron posteriormente; si bien expresaron una aproximación intuitiva a la ley de los grandes números, no lograron progresar en ella. En general los estudiantes se mostraron dubitativos al contestar a las preguntas de las hojas de control, a pesar del poco tiempo transcurrido desde la enseñanza.
Resumo:
Se trabajará mediante el método Aula – Taller con guías de trabajos prácticos que inducirán a los docentes a investigar en Cabri los temas a desarrollar. El taller está dirigido para docentes de nivel medio, terciario que deseen incorporar el relevante tema de Fractales en la curricula Mediante la observación de un video sobre Fractales y lectura de textos sobre el tema se invitará a los asistentes a recorren este nuevo mundo que permite desde la simplicidad de un elemento geométrico llegar a formas intrincadas y enigmáticas.
Resumo:
Con este trabajo se da cuenta de los aprendizajes que logran los estudiantes del nivel bachillerato al trabajar con un problema de una situación real de movimiento empleando tecnología como son los sensores (dispositivos transductores) y calculadora graficadora. La aproximación socioepistemológica sirvió de sustento para realizar un análisis previo, el cual nos permitió identificar tres usos de las gráficas: construcción de gráficas utilizando la regla de correspondencia entre dos variables, gráficas por operaciones gráficas y la graficación por medio de la simulación de un fenómeno físico empleando tecnología. El trabajo con estudiantes nos permitió caracterizar el uso de las gráficas a partir de las actividades de modelación con las características del Comportamiento Tendencial de las Funciones.
Resumo:
En el campo de la matemática educativa, el concepto de periodicidad es un tema muy poco explorado, a pesar de encontrarse inmerso prácticamente en el currículo escolar de la matemática. Este concepto es ampliamente utilizado en diversos tópicos de matemáticas, sin embargo, solo existe poco trabajo de corte epistemológico al respecto, donde se encuentra el trabajo de Shama (1998), este estudio cognitivo nos plantea una problemática sobre la comprensión del estudiante, cuando éste concibe la periodicidad como un proceso y no puede transformarla en objeto. Esto conduce al estudiante a relacionar fenómenos no periódicos como periódicos y a tener preferencia por identificar un periodo de un fenómeno periódico que no es necesariamente en forma correcta. La problemática es retomada para la investigación, considerando los contextos discreto y continuo del concepto. El objetivo es diseñar una situación de tal forma que el estudiante de una nueva explicación sobre la concepción de proceso y pueda alcanzar su transformación al objeto del concepto de periodicidad. Para tal propósito se ha formulado una epistemología de la periodicidad, donde se han hallados ciertos elementos (repetición regular, desplazamiento lineal como el argumento de los fenómenos periódicos, y el comportamiento periódico de una función como un argumento contextual, la manifestación del movimiento en un todo y no en un momento, que permitan la construcción de la periodicidad. El concepto de periodicidad generalmente es tratado en el currículo como una propiedad de cierta clase de funciones llamadas periódicas. Sin embargo es factible pensar la orientación del concepto de periodicidad a través de la noción de comportamiento tendencial de las funciones, donde la epistemología del concepto esté basada en situaciones de tendencia de un comportamiento periódico. De la epistemología de la periodicidad tiene como propósito ser la base de una descomposición genética que incluya los elementos y su relación. Nuestro marco teórico en la investigación es el de la teoría APOE (Acción, Proceso, Objeto, Esquema) y el diseño de actividades, su implementación y la recolección de datos con estudiantes de precálculo y cálculo, a través de la metodología que señala la propia teoría, el ciclo ACE. Los resultados se presentan en la presentación de la investigación.