45 resultados para 512 Algebra, teoría de los números


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los números de Fibonacci han cautivado por muchos años al ser humano por sus aplicaciones en la vida cotidiana y en otras disciplinas. En este documento se presenta el origen de los números de Fibonacci, sus propiedades y su contribución a las matemáticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El trabajo que presentamos es una experiencia desarrollada por los autores y que consiste en trabajar a diferentes niveles (secundaria, bachillerato y universidad) los conceptos que, de forma natural, aparecen al utilizar la generalización como estrategia de resolución de problemas. Con esta estrategia y resolviendo problemas de los libros de texto de bachillerato, se estudian algunas propiedades de la teoría de números. Esta experiencia permite, además, realizar un trabajo interdisciplinar física-matemáticas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La enseñanza del Análisis Matemático en 1o y 2o de Bachillerato y primer año de Universidad, presenta unos problemas, asociados a los fenómenos didácticos inherentes al estudio de las Matemáticas, que es necesario tipificar a partir de la modelización del conocimiento matemático y del proceso de enseñanza escolar. En este Proyecto se estudian los conceptos elementales del Análisis Matemático –límite, continuidad, derivada e integral desde la perspectiva de los obstáculos epistemológicos y de los actos de comprensión (Sierpinska, 1997), en cuanto al saber escolar (detectado en los manuales), el saber enseñado (que figura en los apuntes de los profesores) y el saber del alumno (identificado por medio de sus respuestas a un cuestionario) tratando de extraer datos que faciliten el uso de estrategias de enseñanza-aprendizaje de estas nociones en situaciones de enseñanza adecuadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O projecto de investigação “Estudio sobre la enseñanza-aprendizaje de conceptos fundamentales del análisis matemático (limite, continuidad, derivada e integral) en manuales y en estudiantes del Bachillerato-LOGSE y de primer curso universitario” parece muito interessante nomeadamente quando pretende estudar os problemas relacionados com o ensino e aprendizagem da Análise Matemática nos dois anos do Bachillerato e no primeiro curso da Universidade, e juntar na mesma equipa professores dos dois níveis de ensino envolvidos. O facto de se ligar o ensino da Análise Matemática no pré-universitário e no universitário é um aspecto inovador na investigação em educação matemática.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo se muestran varias poesías que tienen a los números como protagonistas, escritas por autores tanto famosos como menos conocidos, españoles o extranjeros, con el objetivo de facilitar al profesor de Matemáticas de los niveles de Primaria, Secundaria y Bachillerato un no muy habitual recurso metodológico que pueda utilizar en sus clases para conseguir, por una parte, un mayor interés, gusto y motivación de sus alumnos por la asignatura, y por otra, para tratar las competencias socio-culturales, lingüísticas e idiomáticas que debe desarrollar en sus clases, permitiéndole de este modo la promoción de la interdisciplinaridad entre Lengua y Matemáticas, tan deseable para la formación global de sus alumnos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los números usualmente se han trabajado, tanto en los cursos de Primaria como en Secundaria, como instrumentos para realizar actividades en el aula sin tener en cuenta, en muchos casos, que se encuentran en el entorno y se utilizan usualmente en la vida cotidiana. Por ello se presentarán actividades extraídas de situaciones reales en que los números estén en contextos cotidianos que potencien la discusión, la toma de decisiones y que establezcan un enlace entre los centros educativos y el entorno. De esa manera se pretende reflexionar sobre el concepto de número en la práctica educativa diaria con la esperanza de que se considere un instrumento que facilite a los estudiantes vivir en su propio entorno y les ayude a desarrollarse como ciudadanos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La investigación que reportamos, da cuenta de un estudio sobre la comprensión del concepto Elipse en estudiantes entre 16 y 18 años, bajo un enfoque cognitivo, donde se utiliza los modos de pensamiento de Anna Sierpinska como marco teórico y, estudio de casos como diseño metodológico. Nuestra problemática se sitúa al abordar la elipse solamente a través de las ecuaciones cartesianas, afirmamos que estas técnicas no son suficientes para lograr una comprensión profunda del concepto, cuando decimos comprensión profunda, estamos pensando en que el estudiante pueda comprender la elipse en los modos: Sintético-Geométrico (como sección cónica en el espacio/curva que la representa en el plano), Analítico-Aritmético (como pares ordenados que satisfacen la ecuación de la elipse) y Analítico - Estructural (como lugar geométrico). A lo largo de la investigación evidenciamos que los estudiantes logran una mayor comprensión del concepto elipse cuando se enfrentan a situaciones donde interactúan los tres modos de pensar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se sustenta una propuesta didáctica para la comprensión de las cónicas en estudiantes de 16 a 18 años de edad, a partir de una investigación con enfoque cognitivo, desde la teoría los modos de pensamiento de Anna Sierpinska, donde se distinguen tres modos de pensar un concepto: sintético-geométrico (SG), analítico-aritmético (AA) y analítico-estructural (AE). Nuestra problemática se sitúa en la enseñanza-aprendizaje de las cónicas cuando el discurso matemático escolar da prioridad a las ecuaciones cartesianas que las describen. Consideramos que el énfasis en esas ecuaciones, promueve la pérdida de su estructura como lugar geométrico. Como resultado de investigación, se diseña una propuesta didáctica exploratoria en la geometría del taxi, con la convicción de que el aprendiz entiende las cónicas cuando transita entre los distintos modos de comprenderlas: SG (como figuras que las representan), AA (como pares ordenados que satisfacen una ecuación) y AE (como lugar geométrico).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo expone ciertos aspectos de los números racionales e irracionales que generalmente son poco trabajados en las clases sobre los números reales en el bachillerato. La célebre paradoja de Aquiles y la tortuga sirve de pretexto para analizar a los números racionales y su periodicidad vía la noción de serie. Por lo que respecta a los números irracionales, la comparación del lado de un cuadrado y su diagonal nos sirven para introducir el concepto de inconmensurabilidad. Se presenta también un pequeño software, a manera de demo para apoyo de los temas tratados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ya hace unos años A.K. Dewdney en su libro 200% de nada, se hacia eco de los curiosos usos sociales de los números donde se exagera la precisión de los mismos, en casos donde no tiene sentido (1.234.567 manifestantes, 345.674 peces en el lago, 14 horas 45 minutos 34 segundos andan- do,...), con vistas a dar una versión “mas científica” de la información que se desea transmitir. A este fenómeno lo bautizó Dewdney como “dramadigits”. Una conocida historia de John Allen Paulos es la del vigilante de un museo de ciencias naturales que estando ante un gran esqueleto de dinosaurio fue preguntado por unos visitantes sobre la antigüedad de aquellos restos y contestó con una sorprendente precisión: “90.000.006 años”. Extrañados los visitantes sobre los 6 años pidieron explicaciones al paciente guarda y éste respondió “cuando llegué aquí me dijeron que el dinosaurio tenia 90.000.000 de años y de esto ya hace 6 años”. En este clip me gustaría compartir algunas historias cuyo común denominador es este extraño sentido de la precisión.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: Solo existen dos números mórficos, el número de oro y el número plástico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El número de oro y el número plástico pertenecen a la clase de los números mórficos. En este artículo revisamos algunos aspectos históricos, presentamos algunas de sus propiedades y proponemos actividades sobre ellos, que permitirán trabajar transversalmente álgebra y geometría. Usando el lenguaje funcional como modelo de representación, los alumnos podrán conjeturar, de forma intuitiva, un resultado fundamental: “solo existen dos números mórficos, el número de oro y el número plástico”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El ajedrez puede constituir un excelente recurso didáctico en el aula de matemáticas. El presente trabajo trata sobre algunas de las conexiones que se pueden establecer entre estas dos disciplinas, y sobre la posibilidad de plantear problemas matemáticos tomando como soporte el tablero y las piezas de ajedrez. Los contenidos de los problemas son muy variados, manejando diversas cuestiones -algebraicas, combinatorias, geométricas, cálculo de probabilidades, de lógica, etc.-, que resultan especialmente motivadoras por el carácter lúdico y manipulativo que posee el juego de los 64 escaques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo nos proponemos abordar un problema clásico: la división de un segmento en media y extrema razón. Nuestro interés se centra en ilustrar, con un ejemplo sencillo, los sucesivos pasos a la hora de interpretar una magnitud: primero como una longitud, un área o un volumen; después como un segmento; y, por último, como un número. Evolución que refleja el proceso de creación de la geometría analítica. Por otro lado, estos tres periodos coinciden con las tres fases por las que pasa una disciplina matemática: ingenua, formal (en la que se perfecciona el cálculo simbólico) y una fase crítica (en la que se revisan los fundamentos).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Con este material pretendemos divulgar la matemática implicada en los números de identificación tales como NIF, ISBN, EAN... La aritmética modular se utiliza para lijar el dígito de control, y algoritmos sencillos permiten al ordenador descubrir muchas falsificaciones o posibles errores en el número de identificación de la tarjeta, producto o persona. Los esquemas de codificación más usuales detectan todos los errores simples, esto es, cuando se confunde un dígito por otro pero, sin embargo, no descubren otros tipos de errores que, aunque son menos frecuentes, son posibles. El álgebra y la divisibilidad ayudan a elegir esquemas de codificación mas seguros.