16 resultados para vascular access

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trauma care in the general population has largely become protocol-driven, with an emphasis on fast and efficient treatment, good team communication at all levels of care including prehospital care, initial resuscitation, intensive care, and rehabilitation. Most available literature on trauma care has focused on adults, allowing the potential to apply concepts from adult care to pediatric care. But there remain issues that will always be specific to pediatric patients that may not translate from adults. Several new devices such as intraosseous (IO) needle systems and techniques such as ultrasonography to cannulate central and peripheral veins have become available for integration into our pre-existing trauma care system for children. This review will focus specifically on the latest techniques and evidence available for establishing intravenous access, rational approaches to fluid resuscitation, and blood product transfusion in the pediatric trauma patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When solid material is removed in order to create flow channels in a load carrying structure, the strength of the structure decreases. On the other hand, a structure with channels is lighter and easier to transport as part of a vehicle. Here, we show that this trade off can be used for benefit, to design a vascular mechanical structure. When the total amount of solid is fixed and the sizes, shapes, and positions of the channels can vary, it is possible to morph the flow architecture such that it endows the mechanical structure with maximum strength. The result is a multifunctional structure that offers not only mechanical strength but also new capabilities necessary for volumetric functionalities such as self-healing and self-cooling. We illustrate the generation of such designs for strength and fluid flow for several classes of vasculatures: parallel channels, trees with one, two, and three bifurcation levels. The flow regime in every channel is laminar and fully developed. In each case, we found that it is possible to select not only the channel dimensions but also their positions such that the entire structure offers more strength and less flow resistance when the total volume (or weight) and the total channel volume are fixed. We show that the minimized peak stress is smaller when the channel volume (φ) is smaller and the vasculature is more complex, i.e., with more levels of bifurcation. Diminishing returns are reached in both directions, decreasing φ and increasing complexity. For example, when φ=0.02 the minimized peak stress of a design with one bifurcation level is only 0.2% greater than the peak stress in the optimized vascular design with two levels of bifurcation. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: One year after the introduction of Information and Communication Technology (ICT) to support diagnostic imaging at our hospital, clinicians had faster and better access to radiology reports and images; direct access to Computed Tomography (CT) reports in the Electronic Medical Record (EMR) was particularly popular. The objective of this study was to determine whether improvements in radiology reporting and clinical access to diagnostic imaging information one year after the ICT introduction were associated with a reduction in the length of patients' hospital stays (LOS). METHODS: Data describing hospital stays and diagnostic imaging were collected retrospectively from the EMR during periods of equal duration before and one year after the introduction of ICT. The post-ICT period was chosen because of the documented improvement in clinical access to radiology results during that period. The data set was randomly split into an exploratory part used to establish the hypotheses, and a confirmatory part. The data was used to compare the pre-ICT and post-ICT status, but also to compare differences between groups. RESULTS: There was no general reduction in LOS one year after ICT introduction. However, there was a 25% reduction for one group - patients with CT scans. This group was heterogeneous, covering 445 different primary discharge diagnoses. Analyses of subgroups were performed to reduce the impact of this divergence. CONCLUSION: Our results did not indicate that improved access to radiology results reduced the patients' LOS. There was, however, a significant reduction in LOS for patients undergoing CT scans. Given the clinicians' interest in CT reports and the results of the subgroup analyses, it is likely that improved access to CT reports contributed to this reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While advances in regenerative medicine and vascular tissue engineering have been substantial in recent years, important stumbling blocks remain. In particular, the limited life span of differentiated cells that are harvested from elderly human donors is an important limitation in many areas of regenerative medicine. Recently, a mutant of the human telomerase reverse transcriptase enzyme (TERT) was described, which is highly processive and elongates telomeres more rapidly than conventional telomerase. This mutant, called pot1-TERT, is a chimeric fusion between the DNA binding protein pot1 and TERT. Because pot1-TERT is highly processive, it is possible that transient delivery of this transgene to cells that are utilized in regenerative medicine applications may elongate telomeres and extend cellular life span while avoiding risks that are associated with retroviral or lentiviral vectors. In the present study, adenoviral delivery of pot1-TERT resulted in transient reconstitution of telomerase activity in human smooth muscle cells, as demonstrated by telomeric repeat amplification protocol (TRAP). In addition, human engineered vessels that were cultured using pot1-TERT-expressing cells had greater collagen content and somewhat better performance in vivo than control grafts. Hence, transient delivery of pot1-TERT to elderly human cells may be useful for increasing cellular life span and improving the functional characteristics of resultant tissue-engineered constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Seri people, a self-governed community of small-scale fishermen in the Gulf of California, Mexico, have ownership rights to fishing grounds where they harvest highly valuable commercial species of bivalves. Outsiders are eager to gain access, and the community has devised a set of rules to allow them in. Because Seri government officials keep all the economic benefits generated from granting this access for themselves, community members create alternative entry mechanisms to divert those benefits to themselves. Under Hardin’s model of the tragedy of the commons, this situation would eventually lead to the overexploitation of the fishery. The Seri people, however, are able to simultaneously maintain access and use controls for the continuing sustainability of their fishing grounds. Using insights from common- pool resources theory, I discuss how Seri community characteristics help mediate the conflict between collective action dilemmas and access and use controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addressing global fisheries overexploitation requires better understanding of how small-scale fishing communities in developing countries limit access to fishing grounds. We analyze the performance of a system based on individual licenses and a common property-rights regime in their ability to generate incentives for self-governance and conservation of fishery resources. Using a qualitative before-after-control-impact approach, we compare two neighbouring fishing communities in the Gulf of California, Mexico. Both were initially governed by the same permit system, are situated in the same ecosystem, use similar harvesting technology, and have overharvested similar species. One community changed to a common property-right regime, enabling the emergence of access controls and avoiding overexploitation of benthic resources, while the other community, still relies on the permit system. We discuss the roles played by power, institutions, socio-historic, and biophysical factors to develop access controls. © 2012 The Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. betagamma subunits of heterotrimeric G proteins (Gbetagamma) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gbetagamma signaling (betaARKct), we evaluated the role of Gbetagamma in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gbetagamma. Furthermore, we studied the effects of in vivo adenoviral-mediated betaARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the betaARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gbetagamma plays a critical role in physiological VSM proliferation, and targeted Gbetagamma inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the effect of statin use after radical prostatectomy (RP) on biochemical recurrence (BCR) in patients with prostate cancer who never received statins before RP. PATIENTS AND METHODS: We conducted a retrospective analysis of 1146 RP patients within the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Multivariable Cox proportional hazards analyses were used to examine differences in risk of BCR between post-RP statin users vs nonusers. To account for varying start dates and duration of statin use during follow-up, post-RP statin use was treated as a time-dependent variable. In a secondary analysis, models were stratified by race to examine the association of post-RP statin use with BCR among black and non-black men. RESULTS: After adjusting for clinical and pathological characteristics, post-RP statin use was significantly associated with 36% reduced risk of BCR (hazard ratio [HR] 0.64, 95% confidence interval [CI] 0.47-0.87; P = 0.004). Post-RP statin use remained associated with reduced risk of BCR after adjusting for preoperative serum cholesterol levels. In secondary analysis, after stratification by race, this protective association was significant in non-black (HR 0.49, 95% CI 0.32-0.75; P = 0.001) but not black men (HR 0.82, 95% CI 0.53-1.28; P = 0.384). CONCLUSION: In this retrospective cohort of men undergoing RP, post-RP statin use was significantly associated with reduced risk of BCR. Whether the association between post-RP statin use and BCR differs by race requires further study. Given these findings, coupled with other studies suggesting that statins may reduce risk of advanced prostate cancer, randomised controlled trials are warranted to formally test the hypothesis that statins slow prostate cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding tumor vascular dynamics through parameters such as blood flow and oxygenation can yield insight into tumor biology and therapeutic response. Hyperspectral microscopy enables optical detection of hemoglobin saturation or blood velocity by either acquiring multiple images that are spectrally distinct or by rapid acquisition at a single wavelength over time. However, the serial acquisition of spectral images over time prevents the ability to monitor rapid changes in vascular dynamics and cannot monitor concurrent changes in oxygenation and flow rate. Here, we introduce snap shot-multispectral imaging (SS-MSI) for use in imaging the microvasculature in mouse dorsal-window chambers. By spatially multiplexing spectral information into a single-image capture, simultaneous acquisition of dynamic hemoglobin saturation and blood flow over time is achieved down to the capillary level and provides an improved optical tool for monitoring rapid in vivo vascular dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late outgrowth endothelial progenitor cells (EPCs) derived from the peripheral blood of patients with significant coronary artery disease were sodded into the lumens of small diameter expanded polytetrafluoroethylene (ePTFE) vascular grafts. Grafts (1mm inner diameter) were denucleated and sodded either with native EPCs or with EPCs transfected with an adenoviral vector containing the gene for human thrombomodulin (EPC+AdTM). EPC+AdTM was shown to increase the in vitro rate of graft activated protein C (APC) production 4-fold over grafts sodded with untransfected EPCs (p<0.05). Unsodded control and EPC-sodded and EPC+AdTM-sodded grafts were implanted bilaterally into the femoral arteries of athymic rats for 7 or 28 days. Unsodded control grafts, both with and without denucleation treatment, each exhibited 7 day patency rates of 25%. Unsodded grafts showed extensive thrombosis and were not tested for patency over 28 days. In contrast, grafts sodded with untransfected EPCs or EPC+AdTM both had 7 day patency rates of 88-89% and 28 day patency rates of 75-88%. Intimal hyperplasia was observed near both the proximal and distal anastomoses in all sodded graft conditions but did not appear to be the primary occlusive failure event. This in vivo study suggests autologous EPCs derived from the peripheral blood of patients with coronary artery disease may improve the performance of synthetic vascular grafts, although no differences were observed between untransfected EPCs and TM transfected EPCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of tissue engineered constructs to replace diseased or damaged organs is limited without the incorporation of a functional vascular system. To design microvasculature that recapitulates the vascular niche functions for each tissue in the body, we investigated the following hypotheses: (1) cocultures of human umbilical cord blood-derived endothelial progenitor cells (hCB-EPCs) with mural cells can produce the microenvironmental cues necessary to support physiological microvessel formation in vitro; (2) poly(ethylene glycol) (PEG) hydrogel systems can support 3D microvessel formation by hCB-EPCs in coculture with mural cells; (3) mesenchymal cells, derived from either umbilical cord blood (MPCs) or bone marrow (MSCs), can serve as mural cells upon coculture with hCB-EPCs. Coculture ratios between 0.2 (16,000 cells/cm2) and 0.6 (48,000 cells/cm2) of hCB-EPCs plated upon 3.3 µg/ml of fibronectin-coated tissue culture plastic with (80,000 cells/cm2) of human aortic smooth muscle cells (SMCs), results in robust microvessel structures observable for several weeks in vitro. Endothelial basal media (EBM-2, Lonza) with 9% v/v fetal bovine serum (FBS) could support viability of both hCB-EPCs and SMCs. Coculture spatial arrangement of hCB-EPCs and SMCs significantly affected network formation with mixed systems showing greater connectivity and increased solution levels of angiogenic cytokines than lamellar systems. We extended this model into a 3D system by encapsulation of a 1 to 1 ratio of hCB-EPC and SMCs (30,000 cells/µl) within hydrogels of PEG-conjugated RGDS adhesive peptide (3.5 mM) and PEG-conjugated protease sensitive peptide (6 mM). Robust hCB-EPC microvessels formed within the gel with invasion up to 150 µm depths and parameters of total tubule length (12 mm/mm2), branch points (127/mm2), and average tubule thickness (27 µm). 3D hCB-EPC microvessels showed quiescence of hCB-EPCs (<1% proliferating cells), lumen formation, expression of EC proteins connexin 32 and VE-cadherin, eNOS, basement membrane formation by collagen IV and laminin, and perivascular investment of PDGFR-β+/α-SMA+ cells. MPCs present in <15% of isolations displayed >98% expression for mural markers PDGFR-β, α-SMA, NG2 and supported hCB-EPC by day 14 of coculture with total tubule lengths near 12 mm/mm2. hCB-EPCs cocultured with MSCs underwent cell loss by day 10 with a 4-fold reduction in CD31/PECAM+ cells, in comparison to controls of hCB-EPCs in SMC coculture. Changing the coculture media to endothelial growth media (EBM-2 + 2% v/v FBS + EGM-2 supplement containing VEGF, FGF-2, EGF, hydrocortisone, IGF-1, ascorbic acid, and heparin), promoted stable hCB-EPC network formation in MSC cocultures over 2 weeks in vitro, with total segment length per image area of 9 mm/mm2. Taken together, these findings demonstrate a tissue engineered system that can be utilized to evaluate vascular progenitor cells for angiogenic therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) represent promising cell sources for angiogenic therapies. There are, however, conflicting reports regarding the ability of MSCs to support network formation of endothelial cells. The goal of this study was to assess the ability of human bone marrow-derived MSCs to support network formation of endothelial outgrowth cells (EOCs) derived from umbilical cord blood EPCs. We hypothesized that upon in vitro coculture, MSCs and EOCs promote a microenvironment conducive for EOC network formation without the addition of angiogenic growth supplements. EOC networks formed by coculture with MSCs underwent regression and cell loss by day 10 with a near 4-fold and 2-fold reduction in branch points and mean segment length, respectively, in comparison with networks formed by coculture vascular smooth muscle cell (SMC) cocultures. EOC network regression in MSC cocultures was not caused by lack of vascular endothelial growth factor (VEGF)-A or changes in TGF-β1 or Ang-2 supernatant concentrations in comparison with SMC cocultures. Removal of CD45+ cells from MSCs improved EOC network formation through a 2-fold increase in total segment length and number of branch points in comparison to unsorted MSCs by day 6. These improvements, however, were not sustained by day 10. CD45 expression in MSC cocultures correlated with EOC network regression with a 5-fold increase between day 6 and day 10 of culture. The addition of supplemental growth factors VEGF, fibroblastic growth factor-2, EGF, hydrocortisone, insulin growth factor-1, ascorbic acid, and heparin to MSC cocultures promoted stable EOC network formation over 2 weeks in vitro, without affecting CD45 expression, as evidenced by a lack of significant differences in total segment length (p=0.96). These findings demonstrate the ability of MSCs to support EOC network formation correlates with removal of CD45+ cells and improves upon the addition of soluble growth factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NgBR is a transmembrane protein identified as a Nogo-B-interacting protein and recently has been shown to be a subunit required for cis-prenyltransferase (cisPTase) activity. To investigate the integrated role of NgBR in vascular development, we have characterized endothelial-specific NgBR knockout embryos. Here, we show that endothelial-specific NgBR knockout results in embryonic lethality due to vascular development defects in yolk sac and embryo proper. Loss of NgBR in endothelial cells reduces proliferation and promotes apoptosis of the cells largely through defects in the glycosylation of key endothelial proteins including VEGFR2, VE-cadherin, and CD31, and defective glycosylation can be rescued by treatment with the end product of cisPTase activity, dolichol phosphate. Moreover, NgBR functions in endothelial cells during embryogenesis are Nogo-B independent. These data uniquely show the importance of NgBR and protein glycosylation during vascular development.