14 resultados para Traffic Emissions, Aerosol, PM10, PM2.5, Submicrometer Particles

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient sampling for the Pittsburgh Air Quality Study (PAQS) was conducted from July 2001 to September 2002. The study was designed (1) to characterize particulate matter (PM) by examination of size, surface area, and volume distribution, chemical composition as a function of size and on a single particle basis, morphology, and temporal and spatial variability in the Pittsburgh region; (2) to quantify the impact of the various sources (transportation, power plants, biogenic sources, etc.) on the aerosol concentrations in the area; and (3) to develop and evaluate the next generation of atmospheric aerosol monitoring and modeling techniques. The PAQS objectives, study design, site descriptions and routine and intensive measurements are presented. Special study days are highlighted, including those associated with elevated concentrations of daily average PM2.5 mass. Monthly average and diurnal patterns in aerosol number concentration, and aerosol nitrate, sulfate, elemental carbon, and organic carbon concentrations, light scattering as well as gas-phase ozone, nitrogen oxides, and carbon monoxide are discussed with emphasis on the processes affecting them. Preliminary findings reveal day-to-day variability in aerosol mass and composition, but consistencies in seasonal average diurnal profiles and concentrations. For example, the seasonal average variations in the diurnal PM2.5 mass were predominately driven by the sulfate component. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. MATERIALS AND METHODS: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matters (PM2.5 and PM10) using monthly data measurements from air-monitoring stations in North Carolina in 1993-2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population) calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. RESULTS: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths-with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths-with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD)-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only the underlying causes of deaths were used, and when mortality and air-quality data were analyzed on the county level. In each case, the results of sensitivity analyses demonstrated stability. The importance of analysis of pneumonia as an underlying cause of death was also highlighted. CONCLUSION: Significant associations were observed between decreasing death rates of emphysema, asthma, and pneumonia and decreases in levels of ambient air pollutants in North Carolina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air pollution is a common problem. Particulate matter generated from air pollution has been tied to adverse health outcomes associated with cardiovascular disease. Biomass fuels are a specific contributor to increased particulate matter and arise as a result of indoor heating, cook stoves and indoor food preparation. This is a two part cross sectional study looking at communities in the Madre de Dios region. Survey data was collected from 9 communities along the Madre de Dios River. Individual level household PM2.5 was also collected as a means to generate average PM data stratified by fuel use. Data collection was affected by a number of outside factors, which resulted in a loss of data. Results from the cross-sectional study indicate that hypertension is not a significant source of morbidity. Obesity is prevalent and significantly associated with kitchen venting method indicating a potential relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses results from a study of the use of cleaner cooking solutions and general health status of people in rural areas from the Battambang province of Cambodia. Data collection included 372 demographic, health and socio-economic surveys with households living in 6 villages in the Samlout district, general health examinations, and measurements of stove use and household concentrations of PM 2.5. The data reveal that health in this population is a major concern, with a very high prevalence of reported abdominal pain, nausea, chronic cough, chest pains, and fever during examinations.  At the household level, we find that clean stove ownership is significantly correlated with the educational status of household head and socio-economic status of a household. Respondents from households with clean stoves appear less likely (though not statistically significantly so) to report household individuals having health problems such as occasional cough, high blood pressure and tuberculosis. Concentrations of PM2.5 are positively correlated with prevalence of occasional cough, high blood pressure and tuberculosis. Based on these results, we advise field testing and evaluation of targeted health interventions in these villages to address the numerous concerns of the local population, including exploring the potential role of clean stoves.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Twelve months of aerosol size distributions from 3 to 560nm, measured using scanning mobility particle sizers are presented with an emphasis on average number, surface, and volume distributions, and seasonal and diurnal variation. The measurements were made at the main sampling site of the Pittsburgh Air Quality Study from July 2001 to June 2002. These are supplemented with 5 months of size distribution data from 0.5 to 2.5μm measured with a TSI aerosol particle sizer and 2 months of size distributions measured at an upwind rural sampling site. Measurements at the main site were made continuously under both low and ambient relative humidity. The average Pittsburgh number concentration (3-500nm) is 22,000cm-3 with an average mode size of 40nm. Strong diurnal patterns in number concentrations are evident as a direct effect of the sources of particles (atmospheric nucleation, traffic, and other combustion sources). New particle formation from homogeneous nucleation is significant on 30-50% of study days and over a wide area (at least a hundred kilometers). Rural number concentrations are a factor of 2-3 lower (on average) than the urban values. Average measured distributions are different from model literature urban and rural size distributions. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Timing-related defects are major contributors to test escapes and in-field reliability problems for very-deep submicrometer integrated circuits. Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. We present a test-grading technique that uses the method of output deviations for screening small-delay defects (SDDs). A new gate-delay defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from an n-detect pattern set generated using timing-unaware automatic test-pattern generation (ATPG). It offers significantly lower computational complexity and excites a larger number of long paths compared to a current generation commercial timing-aware ATPG tool. Our results also show that, for the same pattern count, the selected patterns provide more effective coverage ramp-up than timing-aware ATPG and a recent pattern-selection method for random SDDs potentially caused by resistive shorts, resistive opens, and process variations. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001ĝ€ "2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997ĝ€ "2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of concentrating semi-volatile aerosols using a water-condensation technology was investigated using the Versatile Aerosol Concentration Enrichment System (VACES) and the Aerodyne Aerosol Mass Spectrometer (AMS) during measurements of ambient aerosol in Pittsburgh, PA. It was found that the shape of the sulfate mass-weighed size distribution was approximately preserved during passage through the concentrator for all the experiments performed, with a mass enhancement factor of about 10-20 depending on the experiment. The size distributions of organics, ammonium and nitrate were preserved on a relatively clean day (sulfate concentration around 7μg/m3), while during more polluted conditions the concentration of these compounds, especially nitrate, was increased at small sizes after passage through the concentrator. The amount of the extra material, however, is rather small in these experiments: between 2.4% and 7.5% of the final concentrated PM mass is due to "artifact" condensation. An analysis of thermodynamic processes in the concentrator indicates that the extra particle material detected can be explained by redistribution of gas-phase material to the aerosol phase in the concentrator. The analysis shows that the condensation of extra material is expected to be larger for water-soluble semi-volatile material, such as nitrate, which agrees with the observations. The analysis also shows that artifact formation of nitrate will be more pronounced in ammonia-limited conditions and virtually undetectable in ammonia-rich conditions. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new principle of sampling aerosol particles by means of steam injection with the consequent collection of grown droplets has been established. An air stream free of water-soluble gases is rapidly mixed with steam. The resulting supersaturation causes aerosol particles to grow into droplets. The droplets containing dissolved aerosol species are then collected by two cyclones in series. The solution collected in the cyclones is constantly pumped out and can be on- or off-line analysed by means of ion chromatography or flow injection analysis. On the basis of the new sampling principle a prototype of an aerosol sampler was designed which is capable of sampling particles quantitatively down to several nanometres in diameter. The mass sampling efficiency of the instrument was found to be 99\%. The detection limit of the sampler for ammonium, sulphate, nitrate and chloride ions is below 0.7 mu g m(-3). By reduction of an already identified source of contamination, much lower detection limits can be achieved. During measurements the sampler proved to be stable, working without any assistance for extended periods of time. Comparison of the sampler with filter packs during measurements of ambient air aerosols showed that the sampler gives good results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Attempts were made to measure the fraction of elemental carbon (EC) in ultrafine aerosol by modifying an Ambient Carbonaceous Particulate Monitor (ACPM, R&P 5400). The main modification consisted in placing a quartz filter in one of the sampling lines of this dual-channel instrument. With the filter all aerosol and EC contained in it is collected, while in the other line of the instrument the standard impactor samples only particles larger than 0.14 μm. The fraction of EC in particles smaller than 0.14 μm is derived from the difference in concentration as measured via the two sampling lines. Measurements with the modified instrument were made at a suburban site in Amsterdam, The Netherlands. An apparent adsorption artefact, which could not be eliminated by the use of denuders, precluded meaningful evaluation of the data for total carbon. Blanks in the measurements of EC were negligible and the EC data were hence further evaluated. We found that the concentration of EC obtained via the channel with the impactor was systematically lower than that in the filter-line. The average ratio of the concentrations was close to 0.6, which indicates that approximately 40% of the EC was in particles smaller than 0.14 μm. Alternative explanations for the difference in the concentration in the two sampling lines could be excluded, such as a difference in the extent of oxidation. This should be a function of loading, which is not the case. Another reason for the difference could be that less material is collected by the impactor due to rebound, but such bounce of aerosol is very unlikely in The Netherlands due to co-deposition of abundant deliquesced and thus viscous ammonium compounds. The conclusion is that a further modification to assess the true fraction of ultrafine EC, by installing an impactor with cut-off diameter at 0.1 μm, would be worth pursuing. © 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.