11 resultados para Radio circuits

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Timing-related defects are major contributors to test escapes and in-field reliability problems for very-deep submicrometer integrated circuits. Small delay variations induced by crosstalk, process variations, power-supply noise, as well as resistive opens and shorts can potentially cause timing failures in a design, thereby leading to quality and reliability concerns. We present a test-grading technique that uses the method of output deviations for screening small-delay defects (SDDs). A new gate-delay defect probability measure is defined to model delay variations for nanometer technologies. The proposed technique intelligently selects the best set of patterns for SDD detection from an n-detect pattern set generated using timing-unaware automatic test-pattern generation (ATPG). It offers significantly lower computational complexity and excites a larger number of long paths compared to a current generation commercial timing-aware ATPG tool. Our results also show that, for the same pattern count, the selected patterns provide more effective coverage ramp-up than timing-aware ATPG and a recent pattern-selection method for random SDDs potentially caused by resistive shorts, resistive opens, and process variations. © 2010 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measured the midlatitude daytime ionospheric D region electron density profile height variations in July and August 2005 near Duke University by using radio atmospherics (or sferics for short), which are the high-power, broadband very low frequency (VLF) signals launched by lightning discharges. As expected, the measured daytime D region electron density profile heights showed temporal variations quantitatively correlated with solar zenith angle changes. In the midlatitude geographical regions near Duke University, the observed quiet time heights decreased from ∼80 km near sunrise to ∼71 km near noon when the solar zenith angle was minimum. The measured height quantitative dependence on the solar zenith angle was slightly different from the low-latitude measurement given in a previous work. We also observed unexpected spatial variations not linked to the solar zenith angle on some days, with 15% of days exhibiting regional differences larger than 0.5 km. In these 2 months, 14 days had sudden height drops caused by solar flare X-rays, with a minimum height of 63.4 km observed. The induced height change during a solar flare event was approximately proportional to the logarithm of the X-ray flux. In the long waveband (wavelength, 1-8 Å), an increase in flux by a factor of 10 resulted in 6.3 km decrease of the height at the flux peak time, nearly a perfect agreement with the previous measurement. During the rising and decaying phases of the solar flare, the height changes correlated more consistently with the short, rather than the long, wavelength X-ray flux changes. © 2010 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the P(luxI) promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ranging patterns of two male and five female spider monkeys (Ateles geoffroyi) were studied with the use of radio telemetry in Santa Rosa National Park, Costa Rica. The average size of a spider monkey home range was 62.4 hectares; however, range size varied with sex, and, for females, with the presence of a dependent infant. The probability of encountering a radio‐collared spider monkey in a three‐hour search using radio telemetry (0.91) was much greater than using a visual search (0.20), and telemetric data resulted in a larger estimate of mean home range size than did observational data, when all subjects were compared. However, the difference appeared to be owing to the presence of male ranges in the telemetric, but not the observational, data. When the size of home ranges derived from radio‐tracking data for adult females was compared to size of ranges for adult females derived from observations, the results were not significantly different. Adult males had larger home ranges than adult females, thus lending support to the hypothesis that males have adapted to the dispersion of females by occupying a large home range that overlaps the ranges of several adult females. The smallest home ranges were occupied by low‐weight females with dependent infants, perhaps reflecting social and energetic constraints. Copyright © 1988 Wiley‐Liss, Inc., A Wiley Company

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in cognition with aging have been claimed to be due in large part to a decline in frontal lobe function. However, at our present state of knowledge, the emphasis on the frontal lobes to the exclusion of the rest of the frontal-striatal circuits of which they are a part is unwarranted. To argue this point, I consider another anatomical candidate within these circuits, the caudate. Evidence is presented that the caudate decreases in size with age as much as the frontal lobes and that damage to either the frontal lobes or the caudate is accompanied by declines in inhibitory processes, executive control, and cognitive speed similar to those seen in normal aging. Separating the unique contributions of the frontal lobes and the caudate to these circuits is difficult but should be the focus of future studies of the biological basis of cognitive aging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The initial results from clinical trials investigating the utility of acoustic radiation force impulse (ARFI) imaging for use with radio-frequency ablation (RFA) procedures in the liver are presented. To date, data have been collected from 6 RFA procedures in 5 unique patients. Large displacement contrast was observed in ARFI images of both pre-ablation malignancies (mean 7.5 dB, range 5.7-11.9 dB) and post-ablation thermal lesions (mean 6.2 dB, range 5.1-7.5 dB). In general, ARFI images provided superior boundary definition of structures relative to the use of conventional sonography alone. Although further investigations are required, initial results are encouraging and demonstrate the clinical promise of the ARFI method for use in many stages of RFA procedures.