5 resultados para Molecular-structure

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The establishment of conductive graphene-molecule-graphene junction is investigated through first-principles electronic structure calculations and quantum transport calculations. The junction consists of a conjugated molecule connecting two parallel graphene sheets. The effects of molecular electronic states, structure relaxation, and molecule-graphene contact on the conductance of the junction are explored. A conductance as large as 0.38 conductance quantum is found achievable with an appropriately oriented dithiophene bridge. This work elucidates the designing principles of promising nanoelectronic devices based on conductive graphene-molecule-graphene junctions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafast UV-vibrational spectroscopy was used to investigate how vibrational excitation of the bridge changes photoinduced electron transfer between donor (dimethylaniline) and acceptor (anthracene) moieties bridged by a guanosine-cytidine base pair (GC). The charge-separated (CS) state yield is found to be lowered by high-frequency bridge mode excitation. The effect is linked to a dynamic modulation of the donor-acceptor coupling interaction by weakening of H-bonding and/or by disruption of the bridging base-pair planarity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tandem allylic oxidation/oxa-Michael reaction promoted by the gem-disubstituent effect and the 2-methyl-6-nitrobenzoic anhydride (MNBA)-mediated dimerization were explored for the efficient and facile synthesis of cyanolide A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A one-step reductive ligation mediated disulfide formation of S-nitrosothiols was developed. This reaction involves the reaction of the S-nitroso group with phosphine-thioesters to form sulfenamide and thiolate intermediates, which then undergo a fast intermolecular disulfide formation to form stable conjugates. This reaction can be used to design new biosensors of S-nitrosated proteins.