20 resultados para Animals, Legends and stories of.

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tandem allylic oxidation/oxa-Michael reaction promoted by the gem-disubstituent effect and the 2-methyl-6-nitrobenzoic anhydride (MNBA)-mediated dimerization were explored for the efficient and facile synthesis of cyanolide A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5-8 megabase sub-chromosomal region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptococcus gattii causes life-threatening disease in otherwise healthy hosts and to a lesser extent in immunocompromised hosts. The highest incidence for this disease is on Vancouver Island, Canada, where an outbreak is expanding into neighboring regions including mainland British Columbia and the United States. This outbreak is caused predominantly by C. gattii molecular type VGII, specifically VGIIa/major. In addition, a novel genotype, VGIIc, has emerged in Oregon and is now a major source of illness in the region. Through molecular epidemiology and population analysis of MLST and VNTR markers, we show that the VGIIc group is clonal and hypothesize it arose recently. The VGIIa/IIc outbreak lineages are sexually fertile and studies support ongoing recombination in the global VGII population. This illustrates two hallmarks of emerging outbreaks: high clonality and the emergence of novel genotypes via recombination. In macrophage and murine infections, the novel VGIIc genotype and VGIIa/major isolates from the United States are highly virulent compared to similar non-outbreak VGIIa/major-related isolates. Combined MLST-VNTR analysis distinguishes clonal expansion of the VGIIa/major outbreak genotype from related but distinguishable less-virulent genotypes isolated from other geographic regions. Our evidence documents emerging hypervirulent genotypes in the United States that may expand further and provides insight into the possible molecular and geographic origins of the outbreak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 54 free-ranging monkeys were captured and marked in Santa Rosa National Park, Costa Rica, during May 1985, and an additional 17 were captured during March 1986. The animals were darted using a blowpipe or a CO2 gun. The drugs used were Ketaset, Sernylan and Telazol. Ketaset was effective for Cebus capucinus but unsuccessful for Alouatta palliata and Ateles geoffroyi. Sernylan was successful for A. geoffroyi and A. palliata but is no longer commercially available. Telazol proved to be an excellent alternative capture drug for both A. palliata and A. geoffroyi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The digestibility and passage of an experimental diet was used to compare the digestive physiology of two Propithecus species: P. verreauxi and P. tattersalli. Though both animals have a similar feeding ecology, the captive status of P. verreauxi is considered more stable than that of P. tattersalli. The test diet included a local tree species, Rhus copallina, at 15% of dry matter intake (DMI) and Mazuri Leafeater Primate Diet at 85% of DMI. The chemical composition of the diet (dry matter basis) was 25% crude protein, 34% neutral detergent fiber (NDF), and 22% acid detergent fiber (ADF) with a gross energy of 4.52 kcal/g. After a 6 week acclimation to the experimental diet, animals were placed in research caging. After a 7 day adjustment period, animals were dosed with chromium mordant and Co-EDTA as markers for digesta passage and all feed refusals and feces were collected at timed intervals for 7 days. Digestibility values, similar for both species, were approximately 65% for dry matter, crude protein, and energy, and 40% and 35% respectively, for NDF and ADF. Transit times (17-18.5 hr) and mean retention times (31-34 hr) were not significantly different between species, and there was no difference between the chromium mordant and Co-EDTA. Serum values for glucose, urea, and non-esterified fatty acids (NEFA) were obtained during four different time periods to monitor nutritional status. While there was no change in serum glucose, serum urea increased over time. The NEFAs increased across all four time periods for P. verreauxi and increased for the first three periods then decreased in the last period for P. tattersalli. Results obtained indicate no difference in digestibility nor digesta passage between species, and that both Propithecus species were similar to other post-gastric folivores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pharmacologic, biochemical, and genetic analyses have demonstrated the existence of multiple alpha 2-adrenergic receptor (alpha 2AR) subtypes. We have cloned a human alpha 2AR by using the polymerase chain reaction with oligonucleotide primers homologous to conserved regions of the previously cloned alpha 2ARs, the genes for which are located on human chromosomes 4 (C4) and 10 (C10). The deduced amino acid sequence encodes a protein of 450 amino acids whose putative topology is similar to that of the family of guanine nucleotide-binding protein-coupled receptors, but whose structure most closely resembles that of the alpha 2ARs. Competition curve analysis of the binding properties of the receptor expressed in COS-7 cells with a variety of adrenergic ligands demonstrates a unique alpha 2AR pharmacology. Hybridization with somatic cell hybrids shows that the gene for this receptor is located on chromosome 2. Northern blot analysis of various rat tissues shows expression in liver and kidney. The unique pharmacology and tissue localization of this receptor suggest that this is an alpha 2AR subtype not previously identified by classical pharmacological or ligand binding approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.