11 resultados para Genetic transcription -- Regulation
em DI-fusion - The institutional repository of Université Libre de Bruxelles
Resumo:
This work shows that the proximal promoter of the mouse Afp gene contains a Ku binding site and that Ku binding is associated with down-regulation of the transcriptional activity of the Afp promoter. The Ku binding site is located in a segment able to adopt a peculiar structured form, probably a hairpin structure. Interestingly, the structured form eliminates the binding sites of the positive transcription factor HNF1. Furthermore, a DNAse hypersensitive site is detected in footprinting experiments done with extracts of AFP non-expressing hepatoma cells. These observations suggest that the structured form is stabilised by Ku and is associated with extinction of the gene in AFP non-expressing hepatic cells.
Resumo:
Erm, a member of the PEA3 group within the Ets family of transcription factors, is expressed in murine and human lymphocytes. Here, we show that in the human Molt4 lymphoblastic cell line, the erm gene expression is regulated by the conventional PKC (cPKC) pathway. To better characterize the molecular mechanism by which cPKC regulates Erm transcription in Molt4 cells, we tested proximal promoter deletions of the human gene, and identified a specific cPKC-regulated region between positions -420 and -115 upstream of the first exon.
Resumo:
Interleukin (IL)-10, a potent anti-inflammatory cytokine, limits the severity of acute pancreatitis and downregulates transforming growth factor (TGF)-beta release by inflammatory cells on stimulation. Proinflammatory mediators, reactive oxygen species, and TGF-beta can activate pancreatic stellate cells and their synthesis of collagen I and III. This study evaluates the role of endogenous IL-10 in the modulation of the regeneration phase following acute pancreatitis and in the development of pancreatic fibrosis. IL-10 knockout (KO) mice and their C57BL/6 controls were submitted to repeated courses (3/wk, during 6 wk, followed by 1 wk of recovery) of cerulein-induced acute pancreatitis. TGF-beta(1) release was measured on plasma, and its pancreatic expression was assessed by quantitative RT-PCR and immunohistochemistry. Intrapancreatic IL-10 gene expression was assessed by semiquantitative RT-PCR, and intrapancreatic collagen content was assessed by picrosirius staining. Activated stellate cells were detected by immunohistochemistry. S phase intrapancreatic cells were marked using tritiated thymidine labeling. After repeated acute pancreatitis, IL-10 KO mice had more severe histological lesions and fibrosis (intrapancreatic collagen content) than controls. TGF-beta(1) plasma levels, intrapancreatic transcription, and expression by ductal and interstitial cells, as well as the number of activated stellate cells, were significantly higher. IL-10 KO mice disclosed significantly fewer acinar cells in S phase, whereas the opposite was observed for pseudotubular cells. Endogenous IL-10 controls the regeneration phase and limits the severity of fibrosis and glandular atrophy induced by repeated episodes of acute pancreatitis in mice.
Resumo:
The 78-kDa glucose-regulated protein (GRP78) is ubiquitously expressed in many cell types. Its promoter contains multiple protein-binding sites and functional elements. In this study we examined a high affinity protein-binding site spanning bp -198 to -180 of the rat grp78 promoter, using nuclear extracts from both B-lymphoid and HeLa cells. This region contains a sequence TGACGTGA which, with the exception of one base, is identical to the cAMP-response element (CRE). Site-directed mutagenesis reveals that this sequence functions as a major basal level regulatory element in hamster fibroblast cells and is also necessary to maintain high promoter activity under stress-induced conditions. By gel mobility shift analysis, we detect two specific protein complexes. The major specific complex I, while immunologically distinct from the 42-kDa CRE-binding protein (CREB), binds most strongly to the grp site, but also exhibits affinity for the CRE consensus sequence. As such, complex I may consist of other members of the CREB/activating transcription factor protein family. The minor specific complex II consists of CREB or a protein antigenically related to it. A nonspecific complex III consists of the Ku autoantigen, an abundant 70- to 80-kDa protein complex in HeLa nuclear extracts. By cotransfection experiments, we demonstrate that in F9 teratocarcinoma cells, the grp78 promoter can be transactivated by the phosphorylated CREB or when the CREB-transfected cells are treated with the calcium ionophore A23187. The differential regulation of the grp78 gene by cAMP in specific cell types and tissues is discussed.
Resumo:
E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoretic-mobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.
Resumo:
Erm, Er81, and Pea3 are the three members of the PEA3 group which belong to the Ets transcription factors family. These proteins regulate transcription of multiple target genes, such as those encoding several matrix metalloproteinases (MMP), which are enzymes degrading the extracellular matrix during cancer metastasis. In fact, PEA3-group genes are often overexpressed in different types of human cancers that also over-express these MMP and display a disseminating phenotype. In experimental models, regulation of PEA3 group member expression has been shown to influence the metastatic process, thus suggesting that these factors play a key role in metastasis. © John Libbey Eurotext.
Resumo:
The PEA3 group is composed of three highly conserved Ets transcription factors: Erm, Er81, and Pea3. These proteins regulate transcription of multiple genes, and their transactivating potential is affected by post-translational modifications. Among their target genes are several matrix metalloproteases (MMPs), which are enzymes degrading the extracellular matrix during normal remodelling events and cancer metastasis. In fact, PEA3-group genes are often over-expressed in different types of cancers that also over-express these MMPs and display a disseminating phenotype. Experimental regulation of the synthesis of PEA3 group members influences the metastatic process. This suggests that these factors play a key role in metastasis. © 2006 Elsevier B.V. All rights reserved.
Resumo:
ERM is a member of the ETS transcription factor family. High levels of the corresponding mRNA are detected in a variety of human breast cancer cell lines, as well as in aggressive human breast tumors. As ERM protein is almost undetectable in these cells, high degradation of this transcription factor has been postulated. Here we have investigated whether ERM degradation might depend on the proteasome pathway. We show that endogenous and ectopically expressed ERM protein is short-lived protein and undergoes proteasome-dependent degradation. Deletion mutagenesis studies indicate that the 61 C-terminal amino acids of ERM are critical for its proteolysis and serve as a degradation signal. Although ERM conjugates with ubiquitin, this post-translational modification does not depend on the C-terminal domain. We have used an Ets-responsive ICAM-1 reporter plasmid to show that the ubiquitin-proteasome pathway can affect transcriptional function of ERM. Thus, ERM is subject to degradation via the 26S proteasome pathway, and this pathway probably plays an important role in regulating ERM transcriptional activity. © 2007 Nature Publishing Group. All rights reserved.
Resumo:
Induction of cell proliferation by mitogen or growth factor stimulation leads to the specific induction or repression of a large number of genes. To identify genes differentially regulated by the cAMP-dependent transduction pathway, which is poorly characterized so far, we used the cDNA expression array technology. Hybridizations of Atlas human cDNA expression arrays with (32)P-labeled cDNA probes derived from control or thyrotropin (TSH)-stimulated dog thyrocytes in primary culture generated expression profiles of hundreds of genes simultaneously. Among the genes that displayed modified expression, we selected the transcription factor ID3, whose expression was increased by a cAMP-dependent stimulus. ID3 overexpression after TSH stimulation was first verified by Northern blotting analysis, and its mRNA regulation was then investigated in response to a variety of agents acting on thyrocyte proliferation and/or differentiation. We show that: (1) ID3 mRNA induction was stronger after stimulation of the cAMP cascade, but was not restricted to this signaling pathway, as phorbol myristate ester (TPA) and insulin also stimulated mRNA accumulation; (2) in contrast, powerful mitogens for thyroid cells, epidermal growth factor and hepatocyte growth factor, did not significantly modify ID3 mRNA levels; (3) ID3 protein levels closely parallelled mRNA levels, as revealed by immunofluorescence experiments showing a nuclear signal regulated by TSH; (4) in papillary thyroid carcinomas, ID3 mRNA was downregulated. Our results suggest that ID3 expression might be more related to the differentiating process induced by TSH than to the proliferative action of this hormone.
Resumo:
In dog thyroid cells, insulin or IGF-1 induces cell growth and is required for the mitogenic action of TSH through cyclic AMP, of EGF, and of phorbol esters. HGF per se stimulates cell proliferation and is thus the only full mitogenic agent. TSH and cAMP enhance, whereas EGF phorbol esters and HGF repress differentiation expression. In this study, we have investigated for each factor and regulatory cascade of the intermediate step of immediate early gene induction, that is, c-myc, c-jun, jun D, jun B, c-fos, fos B, fra-1, fra-2, and egr1; fra-1 and fra-2 expressions were very low. TSH or forskolin increased the levels of c-myc, jun B, jun D, c-fos, and fos B while decreasing those of c-jun and egr1. Phorbol myristate ester stimulated the expression of all the genes. EGF and HGF stimulated the expression of all the genes except jun D and for EGF fos B. All these effects were obtained in the presence and in the absence of insulin, which shows that insulin is not necessary for the effects of the mitogens on immediate early gene expression. The definition of the repertoire of early immediate genes inductible by the various growth cascades provides a framework for the analysis of gene expression in tumors. (1) Insulin was able to induce all the protooncogenes investigated except fos B. This suggests that fos B could be the factor missing for insulin to induce mitogenesis. (2) No characteristic pattern of immediate early gene expression has been observed for insulin, which induces cell hypertrophy and is permissive for the action of the other growth factors. These effects are therefore not accounted for by a specific immediate early gene expression. On the other hand, insulin clearly enhances the effects of TSH, phorbol ester, and EGF on c-myc, junB, and c-fos expression. This suggests that the effect of insulin on mitogenesis might result from quantitative differences in the transcription complexes formed. (3) c-myc, c-fos, and jun B mRNA induction by all stimulating agents, whether inducing cell hypertrophy, or growth and dedifferentiation, or growth and differentiation, suggests that, although these expressions are not sufficient, they may be necessary for the various growth responses of thyroid cells. (4) The inhibition of c-jun and egr1 mRNA expression, and the marked induction of jun D mRNA appear to be specific features of the TSH cAMP pathway. They might be related to its differentiating action. (5) fos B, which is induced by TSH, forskolin, phorbol ester, and HGF but not by insulin, could be involved in the mitogenic action of the former factors.
Resumo:
The E1AF protein belongs to the family of Ets transcription factors and is involved in the regulation of metastasis gene expression. It has recently been reported in an undifferentiated child sarcoma that part of this gene could be fused by translocation to the ews gene. We show here that the human e1af gene, which is located in the q21 region of chromosome 17, is organized in 13 exons distributed along 19 kb of genomic DNA. Its two main functional domains, the acidic domain and the DNA-binding ETS domain, are each encoded by three different exons. The 3'-untranslated region of e1af is 0.7 kb. The 5'-untranslated region is about 0.3 kb and is composed of a first exon upstream from the exon containing the first methionine. These data could possibly accelerate an understanding of the molecular basis of putative inherited diseases linked to E1AF. (C) 1999 Elsevier Science B.V. All rights reserved.