4 resultados para Linguistic resources
em Boston University Digital Common
Resumo:
In this paper, we expose an unorthodox adversarial attack that exploits the transients of a system's adaptive behavior, as opposed to its limited steady-state capacity. We show that a well orchestrated attack could introduce significant inefficiencies that could potentially deprive a network element from much of its capacity, or significantly reduce its service quality, while evading detection by consuming an unsuspicious, small fraction of that element's hijacked capacity. This type of attack stands in sharp contrast to traditional brute-force, sustained high-rate DoS attacks, as well as recently proposed attacks that exploit specific protocol settings such as TCP timeouts. We exemplify what we term as Reduction of Quality (RoQ) attacks by exposing the vulnerabilities of common adaptation mechanisms. We develop control-theoretic models and associated metrics to quantify these vulnerabilities. We present numerical and simulation results, which we validate with observations from real Internet experiments. Our findings motivate the need for the development of adaptation mechanisms that are resilient to these new forms of attacks.
Resumo:
One relatively unexplored question about the Internet's physical structure concerns the geographical location of its components: routers, links and autonomous systems (ASes). We study this question using two large inventories of Internet routers and links, collected by different methods and about two years apart. We first map each router to its geographical location using two different state-of-the-art tools. We then study the relationship between router location and population density; between geographic distance and link density; and between the size and geographic extent of ASes. Our findings are consistent across the two datasets and both mapping methods. First, as expected, router density per person varies widely over different economic regions; however, in economically homogeneous regions, router density shows a strong superlinear relationship to population density. Second, the probability that two routers are directly connected is strongly dependent on distance; our data is consistent with a model in which a majority (up to 75-95%) of link formation is based on geographical distance (as in the Waxman topology generation method). Finally, we find that ASes show high variability in geographic size, which is correlated with other measures of AS size (degree and number of interfaces). Among small to medium ASes, ASes show wide variability in their geographic dispersal; however, all ASes exceeding a certain threshold in size are maximally dispersed geographically. These findings have many implications for the next generation of topology generators, which we envisage as producing router-level graphs annotated with attributes such as link latencies, AS identifiers and geographical locations.