352 resultados para National Science Foundation (U.S.). Directorate for Geosciences.
Resumo:
Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.
Resumo:
We present a thorough characterization of the access patterns in blogspace -- a fast-growing constituent of the content available through the Internet -- which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and administrative requests spanning a 28-day period is done from three different blogosphere perspectives. The server view characterizes the aggregate access patterns of all users to all blogs; the user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different in blogspace than that observed in traditional web content. Access to objects in blogspace could be conceived as part of an interaction between an author and its readership. As we show in our work, such interactions range from one-to-many "broadcast-type" and many-to-one "registration-type" communication between an author and its readers, to multi-way, iterative "parlor-type" dialogues among members of an interest group. This more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed in traditional web content. Second, we identify and characterize novel features of the blogosphere workload, and we investigate the similarities and differences between typical web server workloads and blogosphere server workloads. Given the increasing share of blogspace traffic, understanding such differences is important for capacity planning and traffic engineering purposes, for example.
Resumo:
A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.
Resumo:
The perception of a glossy surface in a static monochromatic image can occur when a bright highlight is embedded in a compatible context of shading and a bounding contour. Some images naturally give rise to the impression that a surface has a uniform reflectance, characteristic of a shiny object, even though the highlight may only cover a small portion of the surface. Nonetheless, an observer may adopt an attitude of scrutiny in viewing a glossy surface, whereby the impression of gloss is partial and nonuniform at image regions outside of a higlight. Using a rating scale and small probe points to indicate image locations, differential perception of gloss within a single object is investigate in the present study. Observers' gloss ratings are not uniform across the surface, but decrease as a function of distance from highlight. When, by design, the distance from a highlight is uncoupled from the luminance value at corresponding probe points, the decrease in rated gloss correlates more with the distance than with the luminance change. Experiments also indicate that gloss ratings change as a function of estimated surface distance, rather than as a function of image distance. Surface continuity affects gloss ratings, suggesting that apprehension of 3D surface structure is crucial for gloss perception.
Resumo:
Multiple sound sources often contain harmonics that overlap and may be degraded by environmental noise. The auditory system is capable of teasing apart these sources into distinct mental objects, or streams. Such an "auditory scene analysis" enables the brain to solve the cocktail party problem. A neural network model of auditory scene analysis, called the AIRSTREAM model, is presented to propose how the brain accomplishes this feat. The model clarifies how the frequency components that correspond to a give acoustic source may be coherently grouped together into distinct streams based on pitch and spatial cues. The model also clarifies how multiple streams may be distinguishes and seperated by the brain. Streams are formed as spectral-pitch resonances that emerge through feedback interactions between frequency-specific spectral representaion of a sound source and its pitch. First, the model transforms a sound into a spatial pattern of frequency-specific activation across a spectral stream layer. The sound has multiple parallel representations at this layer. A sound's spectral representation activates a bottom-up filter that is sensitive to harmonics of the sound's pitch. The filter activates a pitch category which, in turn, activate a top-down expectation that allows one voice or instrument to be tracked through a noisy multiple source environment. Spectral components are suppressed if they do not match harmonics of the top-down expectation that is read-out by the selected pitch, thereby allowing another stream to capture these components, as in the "old-plus-new-heuristic" of Bregman. Multiple simultaneously occuring spectral-pitch resonances can hereby emerge. These resonance and matching mechanisms are specialized versions of Adaptive Resonance Theory, or ART, which clarifies how pitch representations can self-organize durin learning of harmonic bottom-up filters and top-down expectations. The model also clarifies how spatial location cues can help to disambiguate two sources with similar spectral cures. Data are simulated from psychophysical grouping experiments, such as how a tone sweeping upwards in frequency creates a bounce percept by grouping with a downward sweeping tone due to proximity in frequency, even if noise replaces the tones at their interection point. Illusory auditory percepts are also simulated, such as the auditory continuity illusion of a tone continuing through a noise burst even if the tone is not present during the noise, and the scale illusion of Deutsch whereby downward and upward scales presented alternately to the two ears are regrouped based on frequency proximity, leading to a bounce percept. Since related sorts of resonances have been used to quantitatively simulate psychophysical data about speech perception, the model strengthens the hypothesis the ART-like mechanisms are used at multiple levels of the auditory system. Proposals for developing the model to explain more complex streaming data are also provided.
Resumo:
Classifying novel terrain or objects front sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among objects are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system used distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships.
Resumo:
Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.
Resumo:
Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.
Resumo:
Air Force Office of Scientific Research (F49620-01-1-0423); National Geospatial-Intelligence Agency (NMA 201-01-1-2016); National Science Foundation (SBE-035437, DEG-0221680); Office of Naval Research (N00014-01-1-0624)
Resumo:
How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? A 3D FORMOTION model specifies how 3D boundary representations, which separate figures from backgrounds within cortical area V2, capture motion signals at the appropriate depths in MT; how motion signals in MT disambiguate boundaries in V2 via MT-to-Vl-to-V2 feedback; how sparse feature tracking signals are amplified; and how a spatially anisotropic motion grouping process propagates across perceptual space via MT-MST feedback to integrate feature-tracking and ambiguous motion signals to determine a global object motion percept. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.
Resumo:
Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.
Resumo:
National Science Foundation (SBE-0354378); Office of Naval Research (N00014-95-1-0657)
Resumo:
How does the brain make decisions? Speed and accuracy of perceptual decisions covary with certainty in the input, and correlate with the rate of evidence accumulation in parietal and frontal cortical "decision neurons." A biophysically realistic model of interactions within and between Retina/LGN and cortical areas V1, MT, MST, and LIP, gated by basal ganglia, simulates dynamic properties of decision-making in response to ambiguous visual motion stimuli used by Newsome, Shadlen, and colleagues in their neurophysiological experiments. The model clarifies how brain circuits that solve the aperture problem interact with a recurrent competitive network with self-normalizing choice properties to carry out probablistic decisions in real time. Some scientists claim that perception and decision-making can be described using Bayesian inference or related general statistical ideas, that estimate the optimal interpretation of the stimulus given priors and likelihoods. However, such concepts do not propose the neocortical mechanisms that enable perception, and make decisions. The present model explains behavioral and neurophysiological decision-making data without an appeal to Bayesian concepts and, unlike other existing models of these data, generates perceptual representations and choice dynamics in response to the experimental visual stimuli. Quantitative model simulations include the time course of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during both correct and error trials at different levels of input ambiguity in both fixed duration and reaction time tasks. Model MT/MST interactions compute the global direction of random dot motion stimuli, while model LIP computes the stochastic perceptual decision that leads to a saccadic eye movement.
Resumo:
This article presents a new method for predicting viral resistance to seven protease inhibitors from the HIV-1 genotype, and for identifying the positions in the protease gene at which the specific nature of the mutation affects resistance. The neural network Analog ARTMAP predicts protease inhibitor resistance from viral genotypes. A feature selection method detects genetic positions that contribute to resistance both alone and through interactions with other positions. This method has identified positions 35, 37, 62, and 77, where traditional feature selection methods have not detected a contribution to resistance. At several positions in the protease gene, mutations confer differing degress of resistance, depending on the specific amino acid to which the sequence has mutated. To find these positions, an Amino Acid Space is introduced to represent genes in a vector space that captures the functional similarity between amino acid pairs. Feature selection identifies several new positions, including 36, 37, and 43, with amino acid-specific contributions to resistance. Analog ARTMAP networks applied to inputs that represent specific amino acids at these positions perform better than networks that use only mutation locations.
Resumo:
Co-release of the inhibitory neurotransmitter GABA and the neuropeptide substance-P (SP) from single axons is a conspicuous feature of the basal ganglia, yet its computational role, if any, has not been resolved. In a new learning model, co-release of GABA and SP from axons of striatal projection neurons emerges as a highly efficient way to compute the uncertainty responses that are exhibited by dopamine (DA) neurons when animals adapt to probabilistic contingencies between rewards and the stimuli that predict their delivery. Such uncertainty-related dopamine release appears to be an adaptive phenotype, because it promotes behavioral switching at opportune times. Understanding the computational linkages between SP and DA in the basal ganglia is important, because Huntington's disease is characterized by massive SP depletion, whereas Parkinson's disease is characterized by massive DA depletion.