3 resultados para Conversão
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
This work was designed to evaluate the effect of storage forms and conditions upon the enzyme activity of phytase and bioavaibility of calcium and phosphorus in broiler diets. The work was accomplished in two steps. The first step, made in the laboratory measured the activity of the phytase enzyme along the storage period. In this step, two experiments were performed: Experiment 1, constituted of 5 treatments (pure phytase stored at 0 °C, 4 °C and environmental temperature and mixed to vitamin and mineral supplement, stored at environmental temperature) in CRD and split plot scheme. The activities were evaluated every 14 days for 112 days of storage, being verified that the phytase storage in the pure form at 0o C was superior to the other treatments. Experiment 2, made up of 4 treatments (phytase mixed to the ration directly, directly and afterwards pelleted, via mineral supplement and via vitamin supplement),all the treatments being stored at environmental temperature, in CRD and split plot scheme. The activities were evaluated every 7 days for 56 days' storage, being verified that the storage of the phytase mixed to the ration via vitamin supplement and directly with the ration pelleted later, provoked a fall in phytase activity when compared with the other treatments. In the second step, the effect of phytase on the bioavaibility of calcium and phytic phosphorus was evaluated, 2 experiments being accomplished (3 and 4); in both experiments were utilized 576 broiler line chicks, housed in an array of heated batteries, receiving practical diets on the basis of corn and soybean meal (basal) for 21days. At the end of 27 days of age,96 birds were slaughtered for evaluation of the mineral contents (Ca and P) in the tíbias and plasma phosphorus. The excretae were collected from 22 to 27 days of age of the birds. Experiment 3: A CRD with the treatments in 2 x 3 x 2 +4 factorial arrangement was utilized, namely, two levels of total phosphorus (0.35 and 0.45% of total phosphorus), three leveis of phytase (500, 750 and 1,000 FTU) and four additional treatments with levels of 0.35 and 0.45 % of available phosphorus for each sex, with three replicates per treatment. There was significant interaction among levels of phosphorus and phytase (P< 0.05) for weight gain, ration consumption and feed conversion. Phytase did not indicate significant differences when the level 0.45% was utilized, nevertheless, at the level 0.35% as phytase was supplemented, weight gain, ration consumption and feed conversion were improved, chiefly with 1,000 FTU/Kg, in both sexes. The males presented greater weight gain. The ration consumption and feed conversion were equal to those of females. The contrast 0.45% did not affect the performance of males and females, the same not occurring with the level 0.35%,at which the available phosphorus was superior in both the sexes. The highest contents of ashes, phosphorus and calcium in the tíbias and plasma phosphorus were obtained with the levels of 750 and 1,000 FTU/Kg of phytase and 0.45% of total phosphorus. The males presented higher contents of ashes in the tibias. The level 0.45% of available phosphorus presented the greatest contents of ashes, calcium and phosphorus in the tibias, and phosphorus in the plasma. The lowest excretions of phosphorus occurred at the levels 0.35% of total phosphorus and 1,000FTU/kg of phytase. The lowest contents of ashes and calcium in the excretae were obtained with 0.35% and 1,000FTU/Kg of phytase. The females excreted smallest amounts of ashes, calcium and phosphorus than the males. Experiment 4: a CRD with the treatments in 3 x 4 x 2 factorial arrangement, namely, three levels of phytase (0, 500 and 1,000 FTU), four levels of calcium (0.7, 0.8, 0.9 and 1.0%) with four replicates per treatment. The performance was not affected by the treatments utilized, the males being superior to the females in weight gain, feed consumption and conversion. The contents of ashes in the tibias were not affected by the levels of phytase but as calcium levels raised, the ash contents increased. The contents of calcium and phosphorus in the tibias increased with the supplementation of 500 and 1,000 FTU/kg of phytase and with calcium levels. The utilization of phytase did not decrease the excretion of ashes, calcium and phosphorus.
Resumo:
This work presents a study on the production of biodiesel by esterification reaction of oleic acid with methanol using batch reactor and different catalysts based on CeO2 and WO3 and HZSM-5. Acid treatment was performed in order to increase the catalytic activity. Different characterization techniques were performed, among them X-ray diffraction (XRD), Thermogravimetric analysis TGA/DTA, Spectroscopy in the Region in Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF). The effects of independent variables: temperature, molar ratio of oil: alcohol and the amount of catalyst and their interactions on the dependent variable (conversion of oleic acid to the corresponding ester). Overall, through the results obtained in the characterization was observed that the applied treatments were efficient, however the XRF technique, indicated that tungsten oxide leaching could occur during the preparation of the materials. The treatments performed on HZSM-5 caused no significant changes in the structure indicating that the zeolite was quite resistant to the treatments used. It was evaluated using complete 23 factorial design. For the catalysts investigated, the best reaction conditions were obtained when using higher levels of the independent variables temperature and amount of catalyst. However, for the variable molar ratio the lowest level showed significant yields for most of the synthesized catalyst, obtaining maximum conversion to the OC (67.97%), OW (74.37%), HZSM-5 (61.16%) OC-OW 1 (75.93%), OC-OW 2 (82.57%), OC-OW 3 (79.15%), S/OC-OW 1 (86.90%), S/OC-OW 2 (91.04%), S/OC-OW 3 (88.60%), S/OC-OW/H 1 (92.34%), S/OC-OW/H 2 (100%) and S/OC-OW/H 3 (98.16%). According to the experimental design, the temperature has the biggest influence on the reaction variable for all the synthesized catalysts. Among the catalysts investigated S/OC-OW/H 2 e S/OC-OW/H 3 were more effective. Reuse tests showed that the catalyst activity decreased after each cycle, indicating that the regeneration process was effective. The leaching test indicated that the catalysts are heterogeneous in the evaluated operating range. The catalysts investigated showed themselves promising for the production of biodiesel.
Resumo:
The need for renewal and a more efficient use of energy resources has provided an increased interest in studies of methane activation processes in the gas phase by transition metal oxides. In this respect, the present work is an effort to assess , by means of a computational standpoint, the reactivity of NbOm n+ and FeOm n+ (m = 1, 2, n = 0, 1, 2) oxides in the activation process of the methane C-H bond, which corresponds to the first rate limiting step in the process of converting methane to methanol. These oxides are chosen, primarily, because the iron oxides are the most experimentally studied, and iron ions are more abundant in biological mediums. The main motive for choosing niobium oxides is the abundance of natural reserves of this mineral in Brazil (98%), especially in Minas Gerais. Initially, a thorough investigation was conducted, using different theoretical methods, to analyze the structural and electronic properties of the investigated oxides. Based on these results, the most reliable methodology was selected to investigate the activation process of the methane C-H bond by the series of iron and niobium oxides, considering all possible reaction mechanisms known to activate the C-H bond of alkanes. It is worth noting that, up to this moment and to our knowledge, there are no papers, in literature , investigating and comparing all the mechanisms considered in this work. I n general, the main results obtained show different catalytic tendencies and behaviors throughout the series of monoxides and dioxides of iron and niobium. An important and common result found in the two studies is that the increase in the load on the metal center and the addition of oxygen atoms to the metal, clearly favor the initial thermodynamics of the reaction, i.e., favor the approach of the metal center to methane, distorting its electron cloud and, thereby, decreasing its inertia. Comparing the two sets of oxides, we conclude that the iron oxides are the most efficient in activating the methane C-H bond. Among the iron oxides investigated, FeO + showed better kinetic and thermodynamic performance in the reaction with methane, while from the niobium oxides and ions NbO 2+ and NbO2 2+, showed better catalytic efficiency in the activation of the methane C-H bond.