19 resultados para structure formation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper discusses the influence of fat type in the structure of ice cream, during its production by means of rheo-optical analysis. Fat plays an important part in the ice cream structure formation. It's responsible for the air stabilization, flavor release, texture and melting properties. The objective of this study was to use a rheological method to predict the fat network formation in ice cream with three types of fats (hydrogenated, low trans and palm fat). The three formulations were produced using the same methodology and ratio of ingredients. Rheo-optical measurements were taken before and after the ageing process, and the maximum compression force, overrun and melting profile were calculated in the finished product. The rheological analysis showed a better response from the ageing process from the hydrogenated fat, followed by the low trans fat. The formulation with palm fat showed greater differences between the three, where through the rheological tests a weaker destabilization of the fat globule membrane by the emulsifier was suggested. The overrun, texture measurements and meltdown profile has shown the distinction on the structure formation by the hydrogenated fat from the other fats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The weakening mechanisms involved in the collapse of complex impact craters are controversial. The Araguainha impact crater, in Brazil, exposes a complex structure of 40 km in diameter, and is an excellent object to address this issue. Its core is dominated by granite. In addition to microstructural observations, magnetic studies reveal its internal fabric acquired during the collapse phase. All granite samples exhibit impact-related planar deformation features (PDFs) and planar fractures (PFs), which were overprinted by cataclasis. Cataclastic deformation has evolved from incipient brittle fracturing to the development of discrete shear bands in the center of the structure. Fracture planes are systematically decorated by tiny grains (<10 mu m) of magnetite and hematite, and the orientation of magnetic lineation and magnetic foliation obtained by the anisotropies of magnetic susceptibility (AMS) and anhysteretic remanence (AAR) are perfectly coaxial in all studied sites. Therefore, we could track the orientation of deformation features which are decorated by iron oxides using the AMS and AAR. The magnetic fabrics show a regular pattern at the borders of the central peak, with orientations consistent with the fabric of sediments at the crater's inner collar and complex in the center of the structure. Both the cataclastic flow revealed from microstructural observations and the structural pattern of the magnetic anisotropy match the predictions from numerical models of complex impact structures. The widespread occurrence of cataclasis in the central peak, and its orientations revealed by magnetic studies indicate that acoustic fluidization likely operates at all scales, including the mineral scales. The cataclastic flow made possible by acoustic fluidization results in an apparent plastic deformation at the macroscopic scale in the core. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved a-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pain was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's alpha-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Co-doped silica film was deposited on the surface of a Si(100) wafer and isothermally annealed at 750 degrees C to form spherical Co nanoparticles embedded in the silica film and a few atomic layer thick CoSi2 nanoplatelets within the wafer. The structure, morphology, and spatial orientation of the nanoplatelets were characterized. The experimental results indicate that the nanoplatelets exhibit hexagonal shape and a uniform thickness. The CoSi2 nanostructures lattice is coherent with the Si lattice, and each of them is parallel to one of the four planes belonging to the {111} crystallographic form of the host lattice. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683493]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a systematic study on the influence of the synthesis routes on the structural and magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-delta. We have prepared high-quality samples of this material by following a sol-gel method based on heat treatment in both inert argon and oxygen atmospheres in order to compare their effect on the formation of the superconducting phase using X-ray powder diffraction. Magnetic measurements (DC and AC susceptibility) clearly demonstrate that, for the same concentration of Pr, the superconducting transition temperature markedly increases in all samples prepared in argon atmosphere, including pure Pr-123. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Letter reports on the synthesis of Ag-Au nanoparticles (NPs) with controlled structures and compositions via a galvanic replacement reaction between Ag NPs and AuCl4(aq)- followed by the investigation of their optical and catalytic properties. Our results showed the formation of porous walls, hollow interiors and increased Au content in the Ag-Au NPs as the volume of AuCl4(aq)- employed in the reaction was increased. These variations led to a red shift and broadening of the SPR peaks and an increase of up to 10.9-folds in the catalytic activity towards the reduction of 4-nitrophenol relative to Ag NPs. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The viscosity of AOT/water/decane water-in-oil microemulsions exhibits a well-known maximum as a function of water/AOT molar ratio, which is usually attributed to increased attractions among nearly spherical droplets. The maximum can be removed by adding salt or by changing the oil to CCl4. Systematic small-angle X-ray scattering (SAXS) measurements have been used to monitor the structure of the microemulsion droplets in the composition regime where the maximum appears. On increasing the droplet concentration, the scattering intensity is found to scale with the inverse of the wavevector, a behavior which is consistent with cylindrical structures. The inverse wavevector scaling is not observed when the molar ratio is changed, moving the system away from the value corresponding to the viscosity maximum. It is also not present in the scattering from systems containing enough added salt to essentially eliminate the viscosity maximum. An asymptotic analysis of the SAXS data, complemented by some quantitative modeling, is consistent with cylindrical growth of droplets as their concentration is increased. Such elongated structures are familiar from related AOT systems in which the sodium counterion has been exchanged for a divalent one. However, the results of this study suggest that the formation of non-spherical aggregates at low molar ratios is an intrinsic property of AOT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forward modeling is commonly applied to gravity field data of impact structures to determine the main gravity anomaly sources. In this context, we have developed 2.5-D gravity models of the Serra da Cangalha impact structure for the purpose of investigating geological bodies/structures underneath the crater. Interpretation of the models was supported by ground magnetic data acquired along profiles, as well as by high resolution aeromagnetic data. Ground magnetic data reveal the presence of short-wavelength anomalies probably related to shallow magnetic sources that could have been emplaced during the cratering process. Aeromagnetic data show that the basement underneath the crater occurs at an average depth of about 1.9 km, whereas in the region beneath the central uplift it is raised to 0.51 km below the current surface. These depths are also supported by 2.5-D gravity models showing a gentle relief for the basement beneath the central uplift area. Geophysical data were used to provide further constraints for numeral modeling of crater formation that provided important information on the structural modification that affected the rocks underneath the crater, as well as on shock-induced modifications of target rocks. The results showed that the morphology is consistent with the current observations of the crater and that Serra da Cangalha was formed by a meteorite of approximately 1.4 km diameter striking at 12 km s-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarmento C. A. P., Ferreira A. O., Rodrigues E. A. F., Lesnau G. G., Rici R. E. G., Abreu D. K., Biasi C. & Miglino M. A. 2012. [Kidney of Minke Whale (Baleanoptera acutorostrata): Architecture and structure.] Rins de Baleia Minke (Baleanoptera acutorostrata): arquitetura e estrutura. Pesquisa Veterinaria Brasileira 32(8): 807-811. Departamento de Cirurgia, Setor de Anatomia dos Animais Domesticos e Silvestres, Universidade de Sao Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Sao Paulo, SP 05508-270, Brazil. E-mail: sarmento@usp.br Among marine mammals, whale is one of the most attention-arousing animals, especially concerning its urinary tract. This system follows the pattern of mammals with regard to its constitution, however, it differs in renal morphology and number of lobes, which, in turn, form complete reniculi, agglutinated in hundreds. This structure is supported by fibrous connective tissue, but highly capable of maintaining electrolyte balance. Six pairs of kidneys of Minke whale (Balaenoptera acutorostrata), collected in 1982, in Cabedelo, Paraiba, Brazil, in the last fishing allowed, were dissected. These kidneys were preserved in 10% formaldehyde and they presented a very large histologic layer of collagen surrounding the medullary wall. The urinary collecting duct form papillary glasses, that reach a single collecting center which discharges in the ureter. It was found that the kidney of Minke whale has a lobe characteristic, with, on average, 700 reniculi; each reniculus has anatomical and functional characteristics of a unipyramidal kidney, with an inner layer (medulla), and an outer layer (cortex), and independent irrigation, with formation of individually arcuate arteries, as observed in unipyramidal terrestrial mammals. However, the set gathering all these reniculi constitutes, in the end, a multilobular and polipyramidal kidney, contrary to the morphology of most terrestrial mammals. It was not possible to distinguish the renicular cortex structures of the Minke whale in the level of light microscopy. Through scanning electron microscopy, it was possible to visualize a cortical layer located between two fibrous capsules. This joint, in turn, consists of connective tissue, which, along with a layer of collagen and elastic fibers, separates the cortex from the medulla; the kidney glomeruli were visualized, completely taken by the glomerular vessels and arranged into several layers. One notices that the glomerular cavity is almost a virtual space into which the glomerular filtrate is drained, and it does not present a globular shape. Vascularization is increased in the medullary region. The difference between the kidneys of terrestrial and marine mammals consists in the arrangement of morphological components, favoring the organ's physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Europium-doped lanthanide oxide RE2O3:Eu3+ (RE = Y or Gd) luminescent beads, with a spherical shape and a diameter of 150 +/- 15 nm, have been modified by reaction with 3-aminopropyltriethoxysilane (APTES), in order to introduce reactive amine groups at their surfaces. The direct silanation has resulted in the formation of a nanometric layer at the surface of the beads, with an optimum grafting rate of 0.055 +/- 0.005 mol APTES/mol RE2O3. Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopies confirmed the condensation of an organosilane layer, made of cross-linked -O-Si-O-Si- and of groups -O-Si-R (with R = (CH2)(3)NH2 or O-Et). Titration of the accessible amine groups has been performed by simultaneously measuring the luminescence of grafted fluorescein isothiocyanate and that of core particles: there are about 2.3 X 10(4) (2.8 X 10(4)) -NH2 per Y2O3:Eu3+ (Gd2O3:Eu3+) bead. The isoelectronic point was shifted by one pH unit after APTES modification. The surface modification by APTES at least preserved (for Gd2O3:Eu3+) or improved (for Y2O3:Eu3+) the red emission of the beads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aimed to describe the macroscopic and microscopic liver of tambaqui, Colossoma macropomum, Teleost freshwater Family Characidae, of great economic interest for the Amazon basin. We used six juveniles aged between six month and one year, from the small holding Esteio, Alta Floresta/MT, that develops mainly fish farming. The body was photographed in situ, described macroscopically, and fragments were removed and processed by routine histological techniques through paraffin embedding and HE staining. The liver, located ventrally to the swim bladder and craniodorsally to the stomach, is brownish red and consisted of three lobes, the right lateral, the left lateral and the ventral lobe. Microscopically, the parenchyma consists of hepatocytes varying from irregular rounded hexagonal to round forms with a large and central nucleus, and arranged in linear strings limited by sinusoids and radiating to central veins, but with absence of liver lobules. The central veins are distributed throughout the parenchyma, while the portal space consists in most cases only of a hepatic vein and bile duct; elsewhere exist artery and duct. Formation of portal triads was not founde. Melano macrophages were frequently seen dispersed throughout the central parenchyma. The morphofunctional study of the digestive system of fishes of the Amazon basin is important to obtain knowledge about their weight gain, large scale production for human consumption and preservation of the species, and has also its importance for being used as bioindicators today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that the osteoblast differentiation status of bone marrow stem cells (BMSCs) combined with a three-dimensional (3D) structure modulates bone formation when autogenously implanted. Rat BMSCs were aspirated, expanded, and seeded into a 3D composite of poly(lactide-co-glycolide) and calcium phosphate (PLGA/CaP) to produce a hybrid biomaterial. Calvarial defects were implanted with (1) scaffold without cells (SC/NC), (2) scaffold and BMSCs (SC + BMSC), (3) scaffold and osteoblasts differentiated for 7 days (SC + OB7), and (4) for 14 days (SC + OB14). After 4 weeks, there was more bone formation in groups combining scaffold and cells, SC + BMSC and SC + OB7. A nonsignificant higher amount of bone formation was observed on SC + OB14 compared with SC/NC. Additionally, more blood vessels were counted within all hybrid biomaterials, without differences among them, than into SC/NC. These findings provide evidences that the cell differentiation status affects in vivo bone formation in autogenously implanted cell-based constructs. Undifferentiated BMSCs or osteoblasts in early stage of differentiation combined with PLGA/CaP scaffold favored bone formation compared with plain scaffold and that one associated with more mature osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the investigation on the structural differences between InAs quantum rings and their precursor quantum dots species as well as on the presence of piezoelectric fields and asymmetries in these nanostructures. The experimental results show significant reduction in the ring dimensions when the sizes of capped and uncapped ring and dot samples are compared. The iso-lattice parameter mapped by grazing-incidence x-ray diffraction has revealed the lateral extent of strained regions in the buried rings. A comparison between strain and composition of dot and ring structures allows inferring on how the ring formation and its final configuration may affect optical response parameters. Based on the experimental observations, a discussion has been introduced on the effective potential profile to emulate theoretically the ring-shape confinement. The effects of confinement and strain field modulation on electron and hole band structures are simulated by a multiband k.p calculation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733964]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses in the system [Na2S](2/3)[(B2S3)(x)(P2S5)(1-x)](1/3) (0.0 <= x <= 1.0) were prepared by the melt quenching technique, and their properties were characterized by thermal analysis and impedance spectroscopy. Their atomic-level structures were comprehensively characterized by Raman spectroscopy and B-11, P-31, and Na-23 high resolution solid state magic-angle spinning (MAS) NMR techniques. P-31 MAS NMR peak assignments were made by the presence or absence of homonuclear indirect P-31-P-31 spin-spin interactions as detected using homonuclear J-resolved and refocused INADEQUATE techniques. The extent of B-S-P connectivity in the glassy network was quantified by P-31{B-11} and B-11{P-31} rotational echo double resonance spectroscopy. The results clearly illustrate that the network modifier alkali sulfide, Na2S, is not proportionally shared between the two network former components, B and P. Rather, the thiophosphate (P) component tends to attract a larger concentration of network modifier species than predicted by the bulk composition, and this results in the conversion of P2S74-, pyrothiophosphate, Na/P = 2:1, units into PS43-, orthothiophosphate, Na/P = 3:1, groups. Charge balance is maintained by increasing the net degree of polymerization of the thioborate (B) units through the formation of covalent bridging sulfur (BS) units, B S B. Detailed inspection of the B-11 MAS NMR spectra reveals that multiple thioborate units are formed, ranging from neutral BS3/2 groups all the way to the fully depolymerized orthothioborate (BS33-) species. On the basis of these results, a comprehensive and quantitative structural model is developed for these glasses, on the basis of which the compositional trends in the glass transition temperatures (T-g) and ionic conductivities can be rationalized. Up to x = 0.4, the dominant process can be described in a simplified way by the net reaction equation P-1 + B-1 reversible arrow P-0 + B-4, where the superscripts denote the number of BS atoms for the respective network former species. Above x = 0.4, all of the thiophosphate units are of the P-0 type and both pyro-(B-1) and orthothioborate (B-0) species make increasing contributions to the network structure with increasing x. In sharp contrast to the situation in sodium borophosphate glasses, four-coordinated thioborate species are generally less abundant and heteroatomic B-S-P linkages appear to not exist. On the basis of this structural information, compositional trends in the ionic conductivities are discussed in relation to the nature of the charge-compensating anionic species and the spatial distribution of the charge carriers.