11 resultados para resource-based vision theory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The primary objective of this paper is to identify the factors that explain Brazilian companies level of voluntary disclosure. Underpinning this work is the Discretionary-based Disclosure theory. The sample is composed of the top 100 largest non-financial companies listed in the Bolsa de Valores de São Paulo (Brazilian Securities, Commodities, and Futures exchange - BOVESPA). Information was gathered from Financial Statements for the years ending in 2006, 2007, and 2008, with the use of content analysis. A disclosure framework based on 27 studies from these years was created, with a total of 92 voluntary items divided into two dimensions: economic (43) and socio-environmental (49). Based on the existing literature, a total of 12 hypotheses were elaborated and tested using a panel data approach. Results evidence that: (a) Sector and Origin of Control are statistically significant in all three models tested: economic, socio-environmental, and total; (b) Profitability is relevant in the economic model and in the total model; (c) Tobin s Q is relevant in the socio-environmental model and in the total disclosure model; (d) Leverage and Auditing Firm are only relevant in the economic disclosure model; (e) Size, Governance, Stock Issuing, Growth Opportunities and Concentration of Control are not statistically significant in any of the three models.
Resumo:
This article is about how resources can be conceptualized as bundles of attributes for which one can assign economic property rights. Strategic considerations are deliberately incorporated into the analysis through the assessment of the activities of capture and protection of property rights, along with the examination of the institutional environment. These basic elements combine in order to design an approach to strategy. In developing this approach, the authors identify four key questions for structuring the strategy formulation process of the firm. The analytical framework is illustrated through a particular case: the collection of royalties on the genetically modified (GM) technology in soybean seeds.
Resumo:
Purpose - The aim of this study is to investigate whether knowledge management (KM) contributes to the development of strategic orientation and to enhance innovativeness, and whether these three factors contribute to improve business performance. Design/methodology/approach - A sample of 241 Brazilian companies was surveyed, using Web-based questionnaires with 54 questions, using ten-point scales to measure the degree of agreement on each item of each construct. Structural equation modeling techniques were applied for model assessment and analysis of the relationships among constructs. Exploratory factor analysis, confirmatory factor analysis, and path analysis using the technique of structural equation modeling were applied to the data. Findings - Effective KM contributes positively to strategic orientation. Although there is no significant direct effect of KM on innovativeness, the relationship is significant when mediated by strategic orientation. Similarly effective KM has no direct effect on business performance, but this relationship becomes statistically significant when mediated by strategic orientation and innovativeness. Research limitations/implications - The findings indicate that KM permeates all relationships among the constructs, corroborating the argument that knowledge is an essential organizational resource that leverages all value-creating activities. The results indicate that both KM and innovativeness produce significant impacts on performance when they are aligned with a strategic orientation that enables the organization to anticipate and respond to changing market conditions. Originality/value - There is a substantial body of research on several types of relationships involving KM, strategic orientation, innovativeness and performance. This study offers an original contribution by analyzing all of those constructs simultaneously using established scales so that comparative studies are possible.
Resumo:
The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target Stimulus to a patch of color approximately the size of the Landolt C gap (about 7 degrees Of Visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment I Sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects` performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data-including those obtained for children-fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.
Resumo:
1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 19682006) on the diet of Bonellis Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagles primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonellis Eagles diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.
Resumo:
In this paper, we address the problem of defining the product mix in order to maximise a system's throughput. This problem is well known for being NP-Complete and therefore, most contributions to the topic focus on developing heuristics that are able to obtain good solutions for the problem in a short CPU time. In particular, constructive heuristics are available for the problem such as that by Fredendall and Lea, and by Aryanezhad and Komijan. We propose a new constructive heuristic based on the Theory of Constraints and the Knapsack Problem. The computational results indicate that the proposed heuristic yields better results than the existing heuristic.
Resumo:
This paper discusses the power allocation with fixed rate constraint problem in multi-carrier code division multiple access (MC-CDMA) networks, that has been solved through game theoretic perspective by the use of an iterative water-filling algorithm (IWFA). The problem is analyzed under various interference density configurations, and its reliability is studied in terms of solution existence and uniqueness. Moreover, numerical results reveal the approach shortcoming, thus a new method combining swarm intelligence and IWFA is proposed to make practicable the use of game theoretic approaches in realistic MC-CDMA systems scenarios. The contribution of this paper is twofold: (i) provide a complete analysis for the existence and uniqueness of the game solution, from simple to more realist and complex interference scenarios; (ii) propose a hybrid power allocation optimization method combining swarm intelligence, game theory and IWFA. To corroborate the effectiveness of the proposed method, an outage probability analysis in realistic interference scenarios, and a complexity comparison with the classical IWFA are presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Structural and electronic properties of the PtnTM55-n (TM = Co, Rh, Au) nanoalloys are investigated using density functional theory within the generalized gradient approximation and employing the all-electron projected augmented wave method. For TM = Co and Rh, the excess energy, which measures the relative energy stability of the nanoalloys, is negative for all Pt compositions. We found that the excess energy has similar values for a wide range of Pt compositions, i.e., n = 20-42 and n = 28-42 for Co and Rh, respectively, with the core shell icosahedron-like configuration (n = 42) being slightly more stable for both Co and Rh systems because of the larger release of the strain energy due to the smaller atomic size of the Co and Rh atoms. For TM = Au, the excess energy is positive for all compositions, except for n = 13, which is energetically favorable due to the formation of the core-shell structure (Pt in the core and Au atoms at the surface). Thus, our calculations confirm that the formation of core-shell structures plays an important role to increase the stability of nanoalloys. The center of gravity of the occupied d-states changes almost linearly as a function of the Pt composition, and hence, based on the d-band model, the magnitude of the adsorption energy of an adsorbate can be tuned by changing the Pt composition. The magnetic moments of PtnCo55-n decrease almost linearly as a function of the Pt composition; however, the same does not hold for PtRh and PtAu. We found an enhancement of the magnetic moments of PtRh by a few times by increasing Pt composition, which we explain by the compression effects induced by the large size of the Pt atoms compared with the Rh atoms.
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work is supported by Brazilian agencies Fapesp, CAPES and CNPq
Resumo:
Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.