19 resultados para performance liquid-chromatography
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Lipid peroxidation (LPO) has been associated with periodontal disease, and the evaluation of malondialdehyde (MDA) in the gingival crevicular fluid (GCF), an inflammatory exudate from the surrounding tissue of the periodontium, may be useful to clarify the role of LPO in the pathogenesis of periodontal disease. We describe the validation of a method to measure MDA in the GCF using high-performance liquid chromatography. MDA calibration curves were prepared with phosphate-buffered solution spiked with increasing known concentrations of MDA. Healthy and diseased GCF samples were collected from the same patient to avoid interindividual variability. MDA response was linear in the range measured, and excellent agreement was observed between added and detected concentrations of MDA. Samples' intra- and interday coefficients of variation were below 6.3% and 12.4%, respectively. The limit of quantitation (signal/noise = 5) was 0.03 mu M. When the validated method was applied to the GCF, excellent agreement was observed in the MDA quantitation from healthy and diseased sites, and diseased sites presented more MDA than healthy sites (P < 0.05). In this study, a validated method for MDA quantitation in GCF was established with satisfactory sensitivity, precision, and accuracy. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
DEVELOPMENT AND VALIDATION OF AN ANALYTICAL METHOD FOR QUANTITATION OF THE DRUG BEVACIZUMAB BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. In this study, an analytical method was developed and validated for quantitation of the drug bevacizumab (Avastin (R)) by high performance liquid chromatography (HPLC). The HPLC column was a BioSuite 250 (R) HR SEC, 300 x 7.8 mm x 5 mu m (Waters, USA). The mobile phase consisted of phosphate buffered saline (PBS). The results revealed that the method was specific, precise. accurate, robust and linear (r(2) = 0.998) from 5 to 75 mu g mL(-1). Therefore, this method can be used in drug release studies or in quality control ampoules of the drug.
Resumo:
Implementing precise techniques in routine diagnosis of chronic granulomatous disease (CGD), which expedite the screening of molecular defects, may be critical for a quick assumption of patient prognosis. This study compared the efficacy of single-strand conformation polymorphism analysis (SSCP) and high-performance liquid chromatography under partially denaturing conditions (dHPLC) for screening mutations in CGD patients. We selected 10 male CGD patients with a clinical history of severe recurrent infections and abnormal respiratory burst function. gDNA, mRNA and cDNA samples were prepared by standard methods. CYBB exons were amplified by PCR and screened by SSCP or dHPLC. Abnormal DNA fragments were sequenced to reveal the nature of the mutations. The SSCP and dHPLC methods showed DNA abnormalities, respectively, in 55% and 100% of the cases. Sequencing of the abnormal DNA samples confirmed mutations in all cases. Four novel mutations in CYBB were identified which were picked up only by the dHPLC screening (c.904 insC, c.141+5 g>t, c.553 T>C, and c.665 A>T). This work highlights the relevance of dHPLC, a sensitive, fast, reliable and cost-effective method for screening mutations in CGD, which in combination with functional assays assessing the phagocyte respiratory burst will contribute to expedite the definitive diagnosis of X-linked CGD, direct treatment, genetic counselling and to have a clear assumption of the prognosis. This strategy is especially suitable for developing countries.
Resumo:
A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm) was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter) in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v). The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.
Resumo:
Styrax camporum Pohl, known in Brazil as estoraque do campo or cuia de brejo, has been used in the treatment of gastrointestinal diseases. The therapeutic action of S. camporum has been attributed to the ethyl acetate fraction, although the chemical composition of this fraction has not yet been analyzed. In this study, a high-performance liquid chromatography photodiode array detection (HPLC-PAD) method for analysis of Brazilian Styrax species has been developed. The compounds egonol (1) and homoegonol (2) were found to be present in all the samples investigated by HPLC. These compounds were isolated by open column chromatography followed by preparative TLC, and were identified by 1H NMR. Compounds 1 and 2 were thus proposed as phytochemical markers for Styrax, owing to their biological properties and presence in other Styrax species. The developed method has been validated and successfully applied for quantification of 1 and 2 in S. camporum dried leaves and crude ethanolic extracts from S. ferrugineus and S. pohlii aerial parts. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
This paper presents simple, rapid, precise and accurate stability-indicating HPLC and CE methods, which were developed and validated for the determination of nitrendipine, nimodipine and nisoldipine. These drugs are calcium channel antagonists of the 1,4-dihydropyridine type which are used in the treatment of cardiovascular diseases. Experimental results showed a good linear correlation between the area and the concentration of drugs covering a relatively large domain of concentration in all cases. The linearity of the analytical procedures was in the range of 2.0-120.0 mu g mL-1 for nitrendipine, 1.0-100.0 mu g mL(-1) for nimodipine and 100.0-600.0 mu g mL(-1) for nisoldipine, the regression determination coefficient being higher than 0.99 in all cases. The proposed methods were found to have good precision and accuracy. The chemical stability of these drugs was determined under various conditions and the methods have shown adequate separation for their enantiomers and degradation products. In addition, degradation products produced as a result of stress studies did not interfere with the detection of the drugs' enantiomers and the assays can thus be considered stability-indicating.
Resumo:
A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm) was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter) in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v). The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.
Resumo:
A rapid, sensitive and specific method for quantifying hydroxocobalamin in human plasma using paracetamol as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethanol 100%; -20°C). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS-MS). Chromatography was performed on Prevail C8 3 μm, analytical column (2.1×100 mm i.d.). The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 5-400 ng.mL-1 (r>0.9983). The limit of quantification was 5 ng.mL-1. The method was also validated without the use of the internal standard. The precision in the intra-batch validation with IS was 9.6%, 8.9%, 1.0% and 2.8% whereas without IS was 9.2%, 8.2%, 1.8% and 1.5% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in intra-batch validation with IS was 108.9%, 99.9%, 98.9% and 99.0% whereas without IS was 101.1%, 99.3%, 97.5% and 92.5% for 5, 15, 80 and 320 ng/mL, respectively. The precision in the inter-batch validation with IS was 9.4%, 6.9%, 4.6% and 5.5% whereas without IS was 10.9%, 6.4%, 5.0% and 6.2% for 5, 15, 80 and 320 ng/mL, respectively. The accuracy in inter-batch validation with IS was 101.9%, 104.1%, 103.2% and 99.7% whereas without IS was 94.4%, 101.2%, 101.6% and 96.0% for 5, 15, 80 and 320 ng/mL, respectively. This HPLC-MS-MS procedure was used to assess the pharmacokinetics of Hydroxo cobalamin following intramuscular injection 5000 μg in healthy volunteers of both sexes (10 males and 10 females). The volunteers had the following clinical characteristics (according to gender and expressed as mean ± SD [range]): males: age: 32.40 ± 8.00 y [23.00-46.00], height: 1.73 ± 0.07 m [1.62-1.85], body weight: 72.48 ± 10.22 Kg [60.20- 88.00]; females: age: 28.60 ± 9.54 y [18.00-44.00], height: 1.60 ± 0.05 m [1.54-1.70], body weight: 58.64 ± 6.09 Kg [51.70- 66.70]. The following pharmacokinetic parameters were obtained from the hydroxocobalamin plasma concentration vs. time curves: AUClast, T1/2, Tmax, Vd, Cl, Cmax and Clast. The pharmacokinetic parameters were 120 (± 25) ng/mL for Cmax, 2044 (± 641) ng.h/mL for AUClast, 8 (± 3.2) ng.mL-1 for Clast, 38 (± 15.8) hr for T1/2 and 2.5 (range 1-6) hr for Tmax. Female volunteers presented significant (p=0.0136) lower AUC (1706 ± 704) ng.h/mL) and larger (p=0.0205) clearance (2.91 ± 1.41 L/hr), as compared to male 2383 ± 343 ng.h/mL and 1.76 ± 0.23 L/hr, respectively. These pharmacokinetic differences could explain the higher prevalence of vitamin B12 deficiency in female patients. The method described validated well without the use of the internal standard and this approach should be investigated in other HPLC-MS-MS methods.
Resumo:
A simple and sensitive analytical method for simultaneous determination of anastrozole, bicalutamide, and tamoxifen as well as their synthetic impurities, anastrozole pentamethyl, bicalutamide 3-fluoro-isomer, and tamoxifen e-isomer, was developed and validated by using high performance liquid chromatography (HPLC). The separation was achieved on a Symmetry (R) C-8 column (100 x 4.6 mm i.d., 3.5 mu m) at room temperature (+/- 24 degrees C), with a mobile phase consisting of acetonitrile/water containing 0.18% N,N dimethyloctylamine and pH adjusted to 3.0 with orthophosphoric acid (46.5/53.5, v/v) at a flow rate of 1.0 mL min(-1) within 20 min. The detection was made at a wavelength of 270 nm by using ultraviolet (UV) detector. No interference peaks from excipients and relative retention time indicated the specificity of the method. The calibration curve showed correlation coefficients (r) > 0.99 calculated by linear regression and analysis of variance (ANOVA). The limit of detection (LOD) and limit of quantitation (LOQ), respectively, were 2.2 and 6.7 mu g mL(-1) for anastrozole, 2.61 and 8.72 mu g mL(-1) for bicalutamide, 2.0 and 6.7 mu g mL(-1) for tamoxifen, 0.06 and 0.22 mu g mL(-1) for anastrozole pentamethyl, 0.02 and 0.07 mu g mL(-1) for bicalutamide 3-fluoro-isomer, and 0.002 and 0.007 mu g mL(-1) for tamoxifen e-isomer. Intraday and interday relative standard deviations (RSDs) were <2.0% (drugs) and <10% (degradation products) as well as the comparison between two different analysts, which were calculated by f test. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.
Resumo:
A simple and sensitive method using solid phase microextraction (SPME) and liquid chromatography (LC) with heated online desorption (SPME-LC) was developed and validated to analyze anticonvulsants (AEDs) in human plasma samples. A heated lab-made interface chamber was used in the desorption procedure, which allowed the transference of the whole extracted sample. The SPME conditions were optimized by applying an experimental design. Important factors are discussed such as fiber coating types, pH, extraction time and desorption conditions. The drugs were analyzed by LC, using a C18 column (150 mm x 4.6 mm x 5 mm); and 50 mmol L-1, pH 5.50 ammonium acetate buffer : acetonitrile : methanol (55 : 22 : 23 v/v) as the mobile phase with a flow rate of 0.8 mL min(-1). The suggested method presented precision (intra-assay and inter-assay), linearity and limit of quantification (LOQ) all adequate for the therapeutic drug monitoring (TDM) of AEDs in plasma.
Resumo:
Piplartine (PPTN) is an alkaloid amide found in Piper species that presents different activities. PPTN determination in rat plasma is necessary to better understand its biological effects. The aim of this study was to develop a sensitive LC-MS/MS method for the determination of PPTN in rat plasma. The performance criteria for linearity, sensitivity, precision, accuracy, recovery, and stability have been assessed and were within the recommended guidelines. The validated method proved to be suitable in a pilot study of PPTN kinetic disposition in rat plasma after a single intraperitoneal dose, and represents an appropriate tool to further pharmacokinetic studies.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
A methodology to analyze organochlorine pesticides (OCPs) in water samples has been accomplished by using headspace stir bar sorptive extraction (HS-SBSE). The bars were in house coated with a thick film of PDMS in order to properly work in the headspace mode. Sampling was done by a novel HS-SBSE system whereas the analysis was performed by capillary GC coupled mass spectrometric detection (HS-SBSE-GC-MS). The extraction optimization, using different experimental parameters has been established by a standard equilibrium time of 120 min at 85 degrees C. A mixture of ACN/toluene as back extraction solvent promoted a good performance to remove the OCPs sorbed in the bar. Reproducibility between 2.1 and 14.8% and linearity between 0.96 and 1.0 were obtained for pesticides spiked in a linear range between 5 and 17 ng/g in water samples during the bar evaluation.