12 resultados para pacs: engineering mathematics and mathematical techniques
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: The aim of this study is to compare the macro- and microsurgery techniques for root coverage using a coronally positioned flap (CPF) associated with enamel matrix derivative (EMD). Methods: Thirty patients were selected for the treatment of localized gingival recessions (GRs) using CPF associated to EMD. Fifteen patients were randomly assigned to the test group (TG), and 15 patients were randomly assigned to the control group (CG). The microsurgical approach was performed in the TG, and the conventional macrosurgical technique was performed in the CG. The clinical parameters evaluated before surgery and after 6 months were GR, probing depth, relative clinical attachment level, width of keratinized tissue (WKT), and thickness of keratinized tissue (TKT). The discomfort evaluation was performed 1 week postoperative. Results: There were no statistically significant differences between groups for all parameters at baseline. At 6 months, there was no statistically significant difference between the techniques in achieving root coverage. The percentage of root coverage was 92% and 83% for TG and CG, respectively. After 6 months, there was a statistically significant increase of WKT and TKT in TG only. Both procedures were well tolerated by all patients. Conclusions: The macro- and microsurgery techniques provided a statistically significant reduction in GR height. After 6 months, there was no statistically significant difference between the techniques regarding root coverage, and the microsurgical technique demonstrated a statistically significant increase in WKT and TKT. J Periodontol 2010;81:1572-1579.
Resumo:
Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of the values of a number of parameters (e.g., the kernel and regularization parameters). In the current work, we propose the combination of meta-learning and search algorithms to deal with the problem of SVM parameter selection. In this combination, given a new problem to be solved, meta-learning is employed to recommend SVM parameter values based on parameter configurations that have been successfully adopted in previous similar problems. The parameter values returned by meta-learning are then used as initial search points by a search technique, which will further explore the parameter space. In this proposal, we envisioned that the initial solutions provided by meta-learning are located in good regions of the search space (i.e. they are closer to optimum solutions). Hence, the search algorithm would need to evaluate a lower number of candidate solutions when looking for an adequate solution. In this work, we investigate the combination of meta-learning with two search algorithms: Particle Swarm Optimization and Tabu Search. The implemented hybrid algorithms were used to select the values of two SVM parameters in the regression domain. These combinations were compared with the use of the search algorithms without meta-learning. The experimental results on a set of 40 regression problems showed that, on average, the proposed hybrid methods obtained lower error rates when compared to their components applied in isolation.
Resumo:
The generalizations of Lie algebras appeared in the modern mathematics and mathematical physics. In this paper we consider recent developments and remaining open problems on the subject. Some of that developments have been influenced by lectures given by Professor Jaime Keller in his research seminar. The survey includes Lie superalgebras, color Lie algebras, Lie algebras in symmetric categories, free Lie tau-algebras, and some generalizations with non-associative enveloping algebras: tangent algebras to analytic loops, bialgebras and primitive elements, non-associative Hopf algebras.
Resumo:
We deal with the optimization of the production of branched sheet metal products. New forming techniques for sheet metal give rise to a wide variety of possible profiles and possible ways of production. In particular, we show how the problem of producing a given profile geometry can be modeled as a discrete optimization problem. We provide a theoretical analysis of the model in order to improve its solution time. In this context we give the complete convex hull description of some substructures of the underlying polyhedron. Moreover, we introduce a new class of facet-defining inequalities that represent connectivity constraints for the profile and show how these inequalities can be separated in polynomial time. Finally, we present numerical results for various test instances, both real-world and academic examples.
Resumo:
A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.
Resumo:
This work presents major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Let G be a graph on n vertices with maximum degree ?. We use the Lovasz local lemma to show the following two results about colourings ? of the edges of the complete graph Kn. If for each vertex v of Kn the colouring ? assigns each colour to at most (n - 2)/(22.4?2) edges emanating from v, then there is a copy of G in Kn which is properly edge-coloured by ?. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409433, 2003]. On the other hand, if ? assigns each colour to at most n/(51?2) edges of Kn, then there is a copy of G in Kn such that each edge of G receives a different colour from ?. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Szekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fernandez, Procacci, and Scoppola [preprint, arXiv:0910.1824]. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 425436, 2012
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.
Resumo:
The results of a pedagogical strategy implemented at the University of Sao Paulo at Sao Carlos are presented and discussed. The initiative was conducted in a transportation course offered to Civil Engineering students. The approach is a combination of problem-based learning and project-based learning (PBL) and blended-learning (B-learning). Starting in 2006, a different problem was introduced every year. From 2009 on, however, the problem-based learning concept was expanded to project-based learning. The performance of the students was analyzed using the following elements: (1) grades in course activities; (2) answers from a questionnaire designed for course evaluation; and (3) cognitive maps made to assess the effects of PBL through the comparison of the responses provided by the students involved and those not involved in the experiment. The results showed positive aspects of the method, such as a strong involvement of several students with the subject. A gradual increase in the average scores obtained by the students in the project activities (from 6.77 in 2006 to 8.24 in 2009) was concomitant with a better evaluation of these activities and of the course as a whole (90 and 97% of options "Good" or "Very good" in 2009, respectively). A growing interest in the field of transportation engineering as an alternative for further studies was also noticed. DOI: 10.1061/(ASCE)EI.1943-5541.0000115. (C) 2012 American Society of Civil Engineers.
Resumo:
We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.