10 resultados para non-radial efficiency
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Aims. The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and o ers an excellent opportunity to observe this process from relatively close-up. Methods. Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by H emission. The variable strength of the non-radial pulsation is confirmed, but does not a ect the other results. Results. For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as v sin i . 35 km However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of H line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the H line emission becomes undetectable
Resumo:
Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 A degrees C. The previously characterized mercerized pulps were hydrolyzed (100 A degrees C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, alpha-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 A degrees C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.
Resumo:
Risers are flexible multilayered pipes formed by an inner flexible metal structure surrounded by polymer layers and spiral wound steel ligaments, also known as armor wires. Since these risers are used to link subsea pipelines to floating oil and gas production installations, and their failure could produce catastrophic consequences, some methods have been proposed to monitor the armor integrity. However, until now there is no practical method that allows the automatic non-destructive detection of individual armor wire rupture. In this work we show a method using magnetic Barkhausen noise that has shown high efficiency in the detection of armor wire rupture. The results are examined under the cyclic and static load conditions of the riser. This work also analyzes the theory behind the singular dependence of the magnetic Barkhausen noise on the applied tension in riser armor wires.
Resumo:
We study an elliptic system of the form Lu = vertical bar v vertical bar(p-1) v and Lv = vertical bar u vertical bar(q-1) u in Omega with homogeneous Dirichlet boundary condition, where Lu := -Delta u in the case of a bounded domain and Lu := -Delta u + u in the cases of an exterior domain or the whole space R-N. We analyze the existence, uniqueness, sign and radial symmetry of ground state solutions and also look for sign changing solutions of the system. More general non-linearities are also considered.
Resumo:
In many hymenopteran insect societies, selfish workers are policed, as selfishness can negatively affect the average inclusive fitness of one or both castes by reducing either the degree of average relatedness to the colony's male offspring or colony efficiency. In stingless bees, the rapid capping of brood cells could aid in controlling selfishness; to this end, we studied cell-sealing efficacy in Melipona bicolor. Execution of cell sealing was found to be both rapid and almost continuous. Comparing the performance of reproductive and non-reproductive workers, the former sealed the cells more efficiently when they contained their own eggs, but less so when the queens' eggs were involved. We argue that the occurrence of disruptions in cell sealing through self-serving reproductive workers is capable of undermining sealing efficacy as a policing instrument, thus making reproductive workers potential rogue individuals.
Resumo:
A commercial casein hydrolysate was microencapsulated in liposomes produced with non-purified soy lecithin, cryoprotected with two different disaccharides and lyophilized. The encapsulation efficiency of casein hydrolysate ranged from 30 to 40%. The powders were analyzed by differential scanning calorimetry (DSC), scanning electron micrography (SEM), infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). DSC data revealed the presence of an exothermal transition in empty lyophilized liposomes, which was ascribed to the presence of a quasicrystalline lamellar phase (intermediary characteristics between the L-beta and L-c phases). The addition of peptides to the liposomal system caused the disappearance of this exothermic phenomenon, as they were located in the polar headgroup portion of the bilayer, causing disorder and preventing the formation of the quasicrystalline phase. Infrared data indicated the presence of the peptides in the lyophilized formulations and showed that the cryoprotectants interacted effectively with the polar heads of phospholipids in the bilayer.
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
Meditation is a mental training, which involves attention and the ability to maintain focus on a particular object. In this study we have applied a specific attentional task to simply measure the performance of the participants with different levels of meditation experience, rather than evaluating meditation practice per se or task performance during meditation. Our objective was to evaluate the performance of regular meditators and non-meditators during an fMRI adapted Stroop Word-Colour Task (SWCT), which requires attention and impulse control, using a block design paradigm. We selected 20 right-handed regular meditators and 19 non-meditators matched for age, years of education and gender. Participants had to choose the colour (red, blue or green) of single words presented visually in three conditions: congruent, neutral and incongruent. Non-meditators showed greater activity than meditators in the right medial frontal, middle temporal, precentral and postcentral gyri and the lentiform nucleus during the incongruent conditions. No regions were more activated in meditators relative to non-meditators in the same comparison. Non-meditators showed an increased pattern of brain activation relative to regular meditators under the same behavioural performance level. This suggests that meditation training improves efficiency, possibly via improved sustained attention and impulse control. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A commercial casein hydrolysate was microencapsulated in liposomes produced with non-purified soy lecithin, cryoprotected with two different disaccharides and lyophilized. The encapsulation efficiency of casein hydrolysate ranged from 30 to 40%. The powders were analyzed by differential scanning calorimetry (DSC), scanning electron micrography (SEM), infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). DSC data revealed the presence of an exothermal transition in empty lyophilized liposomes, which was ascribed to the presence of a quasicrystalline lamellar phase (intermediary characteristics between the Lβ and Lc phases). The addition of peptides to the liposomal system caused the disappearance of this exothermic phenomenon, as they were located in the polar headgroup portion of the bilayer, causing disorder and preventing the formation of the quasicrystalline phase. Infrared data indicated the presence of the peptides in the lyophilized formulations and showed that the cryoprotectants interacted effectively with the polar heads of phospholipids in the bilayer.