GROUND STATE AND NON-GROUND STATE SOLUTIONS OF SOME STRONGLY COUPLED ELLIPTIC SYSTEMS


Autoria(s): Bonheure, Denis; Santos, Ederson Moreira dos; Ramos, Miguel
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

29/10/2013

29/10/2013

2012

Resumo

We study an elliptic system of the form Lu = vertical bar v vertical bar(p-1) v and Lv = vertical bar u vertical bar(q-1) u in Omega with homogeneous Dirichlet boundary condition, where Lu := -Delta u in the case of a bounded domain and Lu := -Delta u + u in the cases of an exterior domain or the whole space R-N. We analyze the existence, uniqueness, sign and radial symmetry of ground state solutions and also look for sign changing solutions of the system. More general non-linearities are also considered.

F.R.S.FNRS

CNPq

CAPES [4316/07-0]

FAPESP [07/54872-8]

Fundacao para a Ciencia e Tecnologia (FCT)

Identificador

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, PROVIDENCE, v. 364, n. 1, pp. 447-491, JAN, 2012

0002-9947

http://www.producao.usp.br/handle/BDPI/36353

Idioma(s)

eng

Publicador

AMER MATHEMATICAL SOC

PROVIDENCE

Relação

TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY

Direitos

openAccess

Copyright AMER MATHEMATICAL SOC

Palavras-Chave #ELLIPTIC SYSTEM #GROUND STATE SOLUTION #POSITIVE SOLUTION #SIGN CHANGING SOLUTION #SYMMETRY #POSITIVE SOLUTIONS #EXISTENCE #SYMMETRY #UNIQUENESS #SYMMETRIZATION #MATHEMATICS
Tipo

article

original article

publishedVersion