41 resultados para multiple linear regression models
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.
Resumo:
We used body mass index (BMI) and waist circumference (WC) as fat indicators to assess whether perinatal and early adulthood factors are associated with adiposity in early adulthood. We hypothesized that risk factors differ between men and women and are also different when WC is used for measuring adiposity as opposed to BMI. We conducted a longitudinal study based on a sample of 2,063 adults from the 1978/1979 Ribeirao Preto birth cohort. Adjustment was performed using four sequential multiple linear regression models stratified by sex. Both perinatal and early adulthood variables influenced adulthood BMI and WC. The associations differed between men and women and depending on the measure of abdominal adiposity (BMI or WC). Living with a partner, for both men and women, and high fat and alcohol intake in men were factors that were consistently associated with higher adulthood BMI and WC levels. The differences observed between sexes may point to different lifestyles of men and women, suggesting that prevention policies should consider gender specific strategies.
Resumo:
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. This novel class of models provides a useful generalization of the heteroscedastic symmetrical nonlinear regression models (Cysneiros et al., 2010), since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions such as skew-t, skew-slash, skew-contaminated normal, among others. A simple EM-type algorithm for iteratively computing maximum likelihood estimates of the parameters is presented and the observed information matrix is derived analytically. In order to examine the performance of the proposed methods, some simulation studies are presented to show the robust aspect of this flexible class against outlying and influential observations and that the maximum likelihood estimates based on the EM-type algorithm do provide good asymptotic properties. Furthermore, local influence measures and the one-step approximations of the estimates in the case-deletion model are obtained. Finally, an illustration of the methodology is given considering a data set previously analyzed under the homoscedastic skew-t nonlinear regression model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Estimates of evapotranspiration on a local scale is important information for agricultural and hydrological practices. However, equations to estimate potential evapotranspiration based only on temperature data, which are simple to use, are usually less trustworthy than the Food and Agriculture Organization (FAO)Penman-Monteith standard method. The present work describes two correction procedures for potential evapotranspiration estimates by temperature, making the results more reliable. Initially, the standard FAO-Penman-Monteith method was evaluated with a complete climatologic data set for the period between 2002 and 2006. Then temperature-based estimates by Camargo and Jensen-Haise methods have been adjusted by error autocorrelation evaluated in biweekly and monthly periods. In a second adjustment, simple linear regression was applied. The adjusted equations have been validated with climatic data available for the Year 2001. Both proposed methodologies showed good agreement with the standard method indicating that the methodology can be used for local potential evapotranspiration estimates.
Resumo:
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.
Resumo:
The objective of this paper is to model variations in test-day milk yields of first lactations of Holstein cows by RR using B-spline functions and Bayesian inference in order to fit adequate and parsimonious models for the estimation of genetic parameters. They used 152,145 test day milk yield records from 7317 first lactations of Holstein cows. The model established in this study was additive, permanent environmental and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cow at calving were included as fixed effects. Authors modeled the average lactation curve of the population with a fourth-order orthogonal Legendre polynomial. They concluded that a cubic B-spline with seven random regression coefficients for both the additive genetic and permanent environment effects was to be the best according to residual mean square and residual variance estimates. Moreover they urged a lower order model (quadratic B-spline with seven random regression coefficients for both random effects) could be adopted because it yielded practically the same genetic parameter estimates with parsimony. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: We aimed to investigate the performance of five different trend analysis criteria for the detection of glaucomatous progression and to determine the most frequently and rapidly progressing locations of the visual field. Design: Retrospective cohort. Participants or Samples: Treated glaucoma patients with =8 Swedish Interactive Thresholding Algorithm (SITA)-standard 24-2 visual field tests. Methods: Progression was determined using trend analysis. Five different criteria were used: (A) =1 significantly progressing point; (B) =2 significantly progressing points; (C) =2 progressing points located in the same hemifield; (D) at least two adjacent progressing points located in the same hemifield; (E) =2 progressing points in the same Garway-Heath map sector. Main Outcome Measures: Number of progressing eyes and false-positive results. Results: We included 587 patients. The number of eyes reaching a progression endpoint using each criterion was: A = 300 (51%); B = 212 (36%); C = 194 (33%); D = 170 (29%); and E = 186 (31%) (P = 0.03). The numbers of eyes with positive slopes were: A = 13 (4.3%); B = 3 (1.4%); C = 3 (1.5%); D = 2 (1.1%); and E = 3 (1.6%) (P = 0.06). The global slopes for progressing eyes were more negative in Groups B, C and D than in Group A (P = 0.004). The visual field locations that progressed more often were those in the nasal field adjacent to the horizontal midline. Conclusions: Pointwise linear regression criteria that take into account the retinal nerve fibre layer anatomy enhances the specificity of trend analysis for the detection glaucomatous visual field progression.
Resumo:
High saturated and trans fatty acid intake, the typical dietary pattern of Western populations, favors a proinflammatory status that contributes to generating insulin resistance (IR). We examined whether the consumption of these fatty acids was associated with IR and inflammatory markers. In this cross-sectional study, 127 non-diabetic individuals were allocated to a group without IR and 56 to another with IR, defined as homeostasis model assessment-IR (HOMA-IR) >2.71. Diet was assessed using 24-h food recalls. Multiple linear regression was employed to test independent associations with HOMA-IR. The IR group presented worse anthropometric, biochemical and inflammatory profiles. Energy intake was correlated with abdominal circumference and inversely with adiponectin concentrations (r = -0.227, P = 0.002), while saturated fat intake correlated with inflammatory markers and trans fat with HOMA-IR (r = 0.160, P = 0.030). Abdominal circumference was associated with HOMA-IR (r = 0.430, P < 0.001). In multiple analysis, HOMA-IR remained associated with trans fat intake (beta = 1.416, P = 0.039) and body mass index (beta = 0.390, P < 0.001), and was also inversely associated with adiponectin (beta = -1.637, P = 0.004). Inclusion of other nutrients (saturated fat and added sugar) or other inflammatory markers (IL-6 and CRP) into the models did not modify these associations. Our study supports that trans fat intake impairs insulin sensitivity. The hypothesis that its effect could depend on transcription factors, resulting in expression of proinflammatory genes, was not corroborated. We speculate that trans fat interferes predominantly with insulin signaling via intracellular kinases, which alter insulin receptor substrates.
Resumo:
Background: In addition to the oncogenic human papillomavirus (HPV), several cofactors are needed in cervical carcinogenesis, but whether the HPV covariates associated with incident i) CIN1 are different from those of incident ii) CIN2 and iii) CIN3 needs further assessment. Objectives: To gain further insights into the true biological differences between CIN1, CIN2 and CIN3, we assessed HPV covariates associated with incident CIN1, CIN2, and CIN3. Study Design and Methods: HPV covariates associated with progression to CIN1, CIN2 and CIN3 were analysed in the combined cohort of the NIS (n = 3,187) and LAMS study (n = 12,114), using competing-risks regression models (in panel data) for baseline HR-HPV-positive women (n = 1,105), who represent a sub-cohort of all 1,865 women prospectively followed-up in these two studies. Results: Altogether, 90 (4.8%), 39 (2.1%) and 14 (1.4%) cases progressed to CIN1, CIN2, and CIN3, respectively. Among these baseline HR-HPV-positive women, the risk profiles of incident GIN I, CIN2 and CIN3 were unique in that completely different HPV covariates were associated with progression to CIN1, CIN2 and CIN3, irrespective which categories (non-progression, CIN1, CIN2, CIN3 or all) were used as competing-risks events in univariate and multivariate models. Conclusions: These data confirm our previous analysis based on multinomial regression models implicating that distinct covariates of HR-HPV are associated with progression to CIN1, CIN2 and CIN3. This emphasises true biological differences between the three grades of GIN, which revisits the concept of combining CIN2 with CIN3 or with CIN1 in histological classification or used as a common end-point, e.g., in HPV vaccine trials.
Resumo:
Background: Changes in heart rate during rest-exercise transition can be characterized by the application of mathematical calculations, such as deltas 0-10 and 0-30 seconds to infer on the parasympathetic nervous system and linear regression and delta applied to data range from 60 to 240 seconds to infer on the sympathetic nervous system. The objective of this study was to test the hypothesis that young and middle-aged subjects have different heart rate responses in exercise of moderate and intense intensity, with different mathematical calculations. Methods: Seven middle-aged men and ten young men apparently healthy were subject to constant load tests (intense and moderate) in cycle ergometer. The heart rate data were submitted to analysis of deltas (0-10, 0-30 and 60-240 seconds) and simple linear regression (60-240 seconds). The parameters obtained from simple linear regression analysis were: intercept and slope angle. We used the Shapiro-Wilk test to check the distribution of data and the "t" test for unpaired comparisons between groups. The level of statistical significance was 5%. Results: The value of the intercept and delta 0-10 seconds was lower in middle age in two loads tested and the inclination angle was lower in moderate exercise in middle age. Conclusion: The young subjects present greater magnitude of vagal withdrawal in the initial stage of the HR response during constant load exercise and higher speed of adjustment of sympathetic response in moderate exercise.
Resumo:
The beta-Birnbaum-Saunders (Cordeiro and Lemonte, 2011) and Birnbaum-Saunders (Birnbaum and Saunders, 1969a) distributions have been used quite effectively to model failure times for materials subject to fatigue and lifetime data. We define the log-beta-Birnbaum-Saunders distribution by the logarithm of the beta-Birnbaum-Saunders distribution. Explicit expressions for its generating function and moments are derived. We propose a new log-beta-Birnbaum-Saunders regression model that can be applied to censored data and be used more effectively in survival analysis. We obtain the maximum likelihood estimates of the model parameters for censored data and investigate influence diagnostics. The new location-scale regression model is modified for the possibility that long-term survivors may be presented in the data. Its usefulness is illustrated by means of two real data sets. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Insulin-like growth factor type 1 (IGF1) is a mediator of growth hormone (GH) action, and therefore, IGF1 is a candidate gene for recombinant human GH (rhGH) pharmacogenetics. Lower serum IGF1 levels were found in adults homozygous for 19 cytosine-adenosine (CA) repeats in the IGF1 promoter. The aim of this study was to evaluate the influence of (CA)n IGF1 polymorphism, alone or in combination with GH receptor (GHR)-exon 3 and -202 A/C insulin-like growth factor binding protein-3 (IGFBP3) polymorphisms, on the growth response to rhGH therapy in GH-deficient (GHD) patients. Eighty-four severe GHD patients were genotyped for (CA) n IGF1, -202 A/C IGFBP3 and GHR-exon 3 polymorphisms. Multiple linear regressions were performed to estimate the effect of each genotype, after adjustment for other influential factors. We assessed the influence of genotypes on the first year growth velocity (1st y GV) (n = 84) and adult height standard deviation score (SDS) adjusted for target-height SDS (AH-TH SDS) after rhGH therapy (n = 37). Homozygosity for the IGF1 19CA repeat allele was negatively correlated with 1st y GV (P = 0.03) and AH-TH SDS (P = 0.002) in multiple linear regression analysis. In conjunction with clinical factors, IGF1 and IGFBP3 genotypes explain 29% of the 1st y GV variability, whereas IGF1 and GHR polymorphisms explain 59% of final height-target-height SDS variability. We conclude that homozygosity for IGF1 (CA) 19 allele is associated with less favorable short-and long-term growth outcomes after rhGH treatment in patients with severe GHD. Furthermore, this polymorphism exhibits a non-additive interaction with -202 A/C IGFBP3 genotype on the 1st y GV and with GHR-exon 3 genotype on adult height. The Pharmacogenomics Journal (2012) 12, 439-445; doi:10.1038/tpj.2011.13; published online 5 April 2011
Resumo:
This paper proposes a general class of regression models for continuous proportions when the data contain zeros or ones. The proposed class of models assumes that the response variable has a mixed continuous-discrete distribution with probability mass at zero or one. The beta distribution is used to describe the continuous component of the model, since its density has a wide range of different shapes depending on the values of the two parameters that index the distribution. We use a suitable parameterization of the beta law in terms of its mean and a precision parameter. The parameters of the mixture distribution are modeled as functions of regression parameters. We provide inference, diagnostic, and model selection tools for this class of models. A practical application that employs real data is presented. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider modifications of the nonlinear Schrodinger model (NLS) to look at the recently introduced concept of quasi-integrability. We show that such models possess an in finite number of quasi-conserved charges which present intriguing properties in relation to very specific space-time parity transformations. For the case of two-soliton solutions where the fields are eigenstates of this parity, those charges are asymptotically conserved in the scattering process of the solitons. Even though the charges vary in time their values in the far past and the far future are the same. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. Our findings may have important consequences on the applications of these models in several areas of non-linear science. We make a detailed numerical study of the modified NLS potential of the form V similar to (vertical bar psi vertical bar(2))(2+epsilon), with epsilon being a perturbation parameter. We perform numerical simulations of the scattering of solitons for this model and find a good agreement with the results predicted by the analytical considerations. Our paper shows that the quasi-integrability concepts recently proposed in the context of modifications of the sine-Gordon model remain valid for perturbations of the NLS model.