24 resultados para motif
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This theoretical proposal applies evolutionary aesthetic, animal signalling and sexual selection to understand our artistic cognition, especially rock art aesthetics. Iconographic motifs, universally found in rock art, indicate which set of pre-artistic aesthetic psychological bias has been co-opted to catch the viewer`s attention. The co-evolutionary process of sexual selection could have shaped the design features of both rock art images and their aesthetic cognition by conferring mutual benefits on both producers, via manipulation, and receivers, via information extraction. We show some strategic techniques identified in rock art and art that indicate the occurrence of this co-evolution between producers and receivers.
Resumo:
Scorpion toxins targeting voltage-gated sodium (NaV) channels are peptides that comprise 6076 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (a and beta toxins), according to their binding properties and mode of action. The scorpion a-toxin Ts2, previously described as a beta-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian NaV channel isoforms (rNaV1.2, rNaV1.3, rNaV1.4, hNaV1.5, mNaV1.6, rNaV1.7 and rNaV1.8) and one insect NaV channel isoform (DmNaV1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of NaV1.2, NaV1.3, NaV1.5, NaV1.6 and NaV1.7, but does not affect NaV1.4, NaV1.8 or DmNaV1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of NaV1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three beta-strands and one a-helix, and is arranged in a triangular shape forming a cysteine-stabilized a-helix/beta-sheet (CSa beta) motif.
Resumo:
During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.
Resumo:
Transposons are abundant components of eukaryotic genomes, and play important role in genome evolution. The knowledge about these elements should contribute to the understanding of their impact on the host genomes. The hAT transposon superfamily is one of the best characterized superfamilies in diverse organisms, nevertheless, a detailed study of these elements was never carried in sugarcane. To address this question we analyzed 32 cDNAs similar to that of hAT superfamily of transposons previously identified in the sugarcane transcriptome. Our results revealed that these hAT-like transposases cluster in one highly homogeneous and other more heterogeneous lineage. We present evidences that support the hypothesis that the highly homogeneous group is a domesticated transposase while the remainder of the lineages are composed of transposon units. The first is common to grasses, clusters significantly with domesticated transposases from Arabidopsis, rice and sorghum and is expressed in different tissues of two sugarcane cultivars analyzed. In contrast, the more heterogeneous group represents at least two transposon lineages. We recovered five genomic versions of one lineage, characterizing a novel transposon family with conserved DDE motif, named SChAT. These results indicate the presence of at least three distinct lineages of hAT-like transposase paralogues in sugarcane genome, including a novel transposon family described in Saccharum and a domesticated transposase. Taken together, these findings permit to follow the diversification of some hAT transposase paralogues in sugarcane, aggregating knowledge about the co-evolution of transposons and their host genomes.
Resumo:
Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly con-served CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045. (Blood. 2012;119(13):3060-3063)
Resumo:
We have prepared a DNA-mimicry of nucleosides in which the anti-HIV drug lamivudine (beta-L-2',3'-dideoxy-3'-thiacytidine, 3TC) self-assembles into a base-paired and helically base-stacked hexagonal structure. Face-to-face and face-to-tail stacked 3TC=3TC dimers base-paired through two hydrogen bonds between neutral cytosines by either N-H center dot center dot center dot O or N-H center dot center dot center dot N atoms give rise to a right-handed DNA-mimicry of lamivudine with an unusual highly symmetric hexagonal lattice and topology. In addition, a base-paired and base-stacked supramolecular architecture of lamivudine hemihydrochloride hemihydrate was also obtained as a result of our crystal screenings. This structure is formed through partially face-to-face stacked lamivudine pairs held together by protonated and neutral fragments. However, no helical stacking occurs in this structure in which lamivudine also adopts unusual conformations as the C1'-endo and C1'-exo sugar puckers and cytosine orientations intermediate between the anti and syn conformations. As a conclusion drawn from the nucleoside duplex, the hexagonal DNA-mimicry of lamivudine reveals that such double-stranded helices can be assembled without counterions and organic solvents but with higher crystallographic symmetry instead, because only water crystallizes together with lamivudine in this structure.
Resumo:
Martins JM, Longhi-Balbinot DT, Soares DM, Figueiredo MJ, Malvar D do C, de Melo MC, Rae GA, Souza GE. Involvement of PGE(2) and RANTES in Staphylococcus aureus-induced fever in rats. J Appl Physiol 113: 1456-1465, 2012. First published August 30, 2012; doi:10.1152/japplphysiol.00936.2011.-This study investigated the involvement of prostaglandins and regulated on activation, normal T cell expressed and secreted (RANTES), in fever induced by live Staphylococcus aureus (no. 25923, American Type Culture Collection) injection in rats. S. aureus was injected intraperitoneally at 10(9), 10(10), and 2 x 10(10) colony-forming units (CFU)/cavity, and body temperature (T-b) was measured by radiotelemetry. The lowest dose of S. aureus induced a modest transient increase in T-b, whereas the two higher doses promoted similar long-lasting and sustained T-b increases. Thus, the 10(10) CFU/cavity dose was chosen for the remaining experiments. The T-b increase induced by S. aureus was accompanied by significant decreases in tail skin temperature and increases in PGE(2) levels in the cerebrospinal fluid (CSF) and hypothalamus but not in the venous plasma. Celecoxib (selective cyclooxygenase-2 inhibitor, 2.5 mg/kg po) inhibited the fever and the increases in PGE(2) concentration in the CSF and hypothalamus induced by S. aureus. Dipyrone (120 mg/kg ip) reduced the fever from 2.5 to 4 h and the PGE(2) increase in the CSF but not in the hypothalamus. S. aureus increased RANTES in the peritoneal exudate but not in the CSF or hypothalamus. Met-RANTES (100 mu g/kg iv), a chemokine (C-C motif) receptor (CCR)1/CCR5 antagonist, reduced the first 6 h of fever induced by S. aureus. This study suggests that peripheral (local) RANTES and central PGE(2) production are key events in the febrile response to live S. aureus injection. As dipyrone does not reduce PGE(2) synthesis in the hypothalamus, it is plausible that S. aureus induces fever, in part, via a dipyrone-sensitive PGE(2)-independent pathway.
Resumo:
While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm(3) [standard deviation (SD) = 99] and a mean viral load of 5.09 log(10) copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno([clinical20%]) algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naive HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.
Resumo:
Objectives: To investigate the role of toll-like receptor 9 on sepsis-induced failure of neutrophil recruitment to the site of infection. Design: Prospective experimental study. Setting: University research laboratory. Interventions: Model of polymicrobial sepsis induced by cecal ligation and puncture in wild-type and toll-like receptor 9-deficient mice. Measurements and Main Results: Toll-like receptor 9-deficient mice with cecal ligation and puncture-induced severe sepsis did not demonstrate failure of neutrophil migration and consequently had a low systemic inflammatory response and a high survival rate. Upon investigating the mechanism by which toll-like receptor 9-deficiency prevents the failure of neutrophil migration, it was found that neutrophils derived from toll-like receptor 9-deficient mice with cecal ligation and puncture induced severe sepsis expressed high levels of chemokine C-X-C motif receptor 2 (CXCR2) and had reduced induction of G-protein-coupled receptor kinase 2. Conclusions: These findings suggest that the poor outcome of severe sepsis is associated with toll-like receptor 9 activation in neutrophils, which triggers G-protein-coupled receptor kinase 2 expression and CXCR2 downregulation. These events account for the reduction of neutrophil migration to the site of infection, with consequent spreading of the infection, onset of the systemic inflammatory response, and a decrease in survival. (Crit Care Med 2012; 40:2631-2637)
Resumo:
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Cellulases participate in a number of biological events, such as plant cell wall remodelling, nematode parasitism and microbial carbon uptake. Their ability to depolymerize crystalline cellulose is of great biotechnological interest for environmentally compatible production of fuels from lignocellulosic biomass. However, industrial use of cellulases is somewhat limited by both their low catalytic efficiency and stability. In the present study, we conducted a detailed functional and structural characterization of the thermostable BsCe15A (Bacillus subtilis cellulase 5A), which consists of a GH5 (glycoside hydrolase 5) catalytic domain fused to a CBM3 (family 3 carbohydrate-binding module). NMR structural analysis revealed that the Bacillus CBM3 represents a new subfamily, which lacks the classical calcium-binding motif, and variations in NMR frequencies in the presence of cellopentaose showed the importance of polar residues in the carbohydrate interaction. Together with the catalytic domain, the CBM3 forms a large planar surface for cellulose recognition, which conducts the substrate in a proper conformation to the active site and increases enzymatic efficiency. Notably, the manganese ion was demonstrated to have a hyper-stabilizing effect on BsCel5A, and by using deletion constructs and X-ray crystallography we determined that this effect maps to a negatively charged motif located at the opposite face of the catalytic site.
Resumo:
The structures and functional activities of metalloproteinases from snake venoms have been widely studied because of the importance of these molecules in envenomation. Batroxase, which is a metalloproteinase isolated from Bothrops atrox (Para) snake venom, was obtained by gel filtration and anion exchange chromatography. The enzyme is a single protein chain composed of 202 amino acid residues with a molecular mass of 22.9 kDa, as determined by mass spectrometry analysis, showing an isoelectric point of 7.5. The primary sequence analysis indicates that the proteinase contains a zinc ligand motif (HELGHNLGISH) and a sequence C164I165M166 motif that is associated with a "Met-turn" structure. The protein lacks N-glycosylation sites and contains seven half cystine residues, six of which are conserved as pairs to form disulfide bridges. The three-dimensional structure of Batroxase was modeled based on the crystal structure of BmooMP alpha-I from Bothrops moojeni. The model revealed that the zinc binding site has a high structural similarity to the binding site of other metalloproteinases. Batroxase presented weak hemorrhagic activity, with a MHD of 10 mu g, and was able to hydrolyze extracellular matrix components, such as type IV collagen and fibronectin. The toxin cleaves both a and beta-chains of the fibrinogen molecule, and it can be inhibited by EDTA. EGTA and beta-mercaptoethanol. Batroxase was able to dissolve fibrin clots independently of plasminogen activation. These results demonstrate that Batroxase is a zinc-dependent hemorrhagic metalloproteinase with fibrin(ogen)olytic and thrombolytic activity. Published by Elsevier Ltd.
Resumo:
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.
Resumo:
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Resumo:
Glycosylation is an important post-translational modification of snake venom proteins and contributes to venom proteome complexity. Many snake venom components are known to be glycosylated, however, very little is known about the carbohydrate structures present in venom glycoproteins. Previous studies showed that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and shift in animal size are associated with changes in the venom proteome of the snake Bothrops jararaca. In this study we explored the composition of the N-glycome released from newborn and adult B. jararaca venom proteins. We used an ion trap mass spectrometer (IT-MS) to disassemble glycan structures based on the use of several pathways of MS (MSn) and demonstrate the presence of some structural isomers in both newborn and adult venom B. jararaca N-glycans. The main N-glycans identified in both venoms are of the hybrid/complex type however some mannose-rich type structures were also detected. The N-glycan composition of newborn and adult venoms did not vary indicating that differences in the utilization of the N-glycosylation motif could be the explanation for the differences in the glycosylation levels indicated by the differential electrophoretic profiles previously reported for B. jararaca newborn and adult venoms. (C) 2011 Elsevier B.V. All rights reserved.