12 resultados para mathematical modeling of PTO
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
OBJECTIVES: Hemodynamic support is aimed at providing adequate O-2 delivery to the tissues; most interventions target O-2 delivery increase. Mixed venous O-2 saturation is a frequently used parameter to evaluate the adequacy of O-2 delivery. METHODS: We describe a mathematical model to compare the effects of increasing O-2 delivery on venous oxygen saturation through increases in the inspired O-2 fraction versus increases in cardiac output. The model was created based on the lungs, which were divided into shunted and non-shunted areas, and on seven peripheral compartments, each with normal values of perfusion, optimal oxygen consumption, and critical O-2 extraction rate. O-2 delivery was increased by changing the inspired fraction of oxygen from 0.21 to 1.0 in steps of 0.1 under conditions of low (2.0 L.min(-1)) or normal (6.5 L.min(-1)) cardiac output. The same O-2 delivery values were also obtained by maintaining a fixed O-2 inspired fraction value of 0.21 while changing cardiac output. RESULTS: Venous oxygen saturation was higher when produced through increases in inspired O-2 fraction versus increases in cardiac output, even at the same O-2 delivery and consumption values. Specifically, at high inspired O-2 fractions, the measured O-2 saturation values failed to detect conditions of low oxygen supply. CONCLUSIONS: The mode of O-2 delivery optimization, specifically increases in the fraction of inspired oxygen versus increases in cardiac output, can compromise the capability of the "venous O-2 saturation" parameter to measure the adequacy of oxygen supply. Consequently, venous saturation at high inspired O-2 fractions should be interpreted with caution.
Resumo:
This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.
Resumo:
This work presents major results from a novel dynamic model intended to deterministically represent the complex relation between HIV-1 and the human immune system. The novel structure of the model extends previous work by representing different host anatomic compartments under a more in-depth cellular and molecular immunological phenomenology. Recently identified mechanisms related to HIV-1 infection as well as other well known relevant mechanisms typically ignored in mathematical models of HIV-1 pathogenesis and immunology, such as cell-cell transmission, are also addressed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]
Resumo:
Building facilities have become important infrastructures for modern productive plants dedicated to services. In this context, the control systems of intelligent buildings have evolved while their reliability has evidently improved. However, the occurrence of faults is inevitable in systems conceived, constructed and operated by humans. Thus, a practical alternative approach is found to be very useful to reduce the consequences of faults. Yet, only few publications address intelligent building modeling processes that take into consideration the occurrence of faults and how to manage their consequences. In the light of the foregoing, a procedure is proposed for the modeling of intelligent building control systems, considersing their functional specifications in normal operation and in the of the event of faults. The proposed procedure adopts the concepts of discrete event systems and holons, and explores Petri nets and their extensions so as to represent the structure and operation of control systems for intelligent buildings under normal and abnormal situations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The research objective was to determine the effects of spacing and seeding density of common bean to the period prior to weed interference (PPI) and weed period prior to economic loss (WEEPPEL). The treatments consisted of periods of coexistence between culture and the weeds, with 0 to 10, 0 to 20, 0 to 30, 0 to 40, 0 to 50, 0 to 60, 0 to 70, and 0 to 80 days and a control maintained without weeds. In addition to the periods of coexistence, there were still studies with an inter-row of 0.45 and 0.60 m, 10 and 15 plants m(-1). The experimental delineation used was randomized blocks with four repetitions per treatment. The grain productivity of the culture had a reduction of 63, 50, 42 and 57% when the coexistence with the weed plants was during the entire cycle of the culture for a row spacing of 0.45 m and a seeding density of 10 and 15 plants per meter; and a row spacing of 0.60m and a seeding density of 10 and 15 plants per meter, respectively. The PPI occurred in 23, 27, 13, and 19 days after crop emergence and WEEPPEL in 10, 9, 8, and 8 days, respectively.
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.