5 resultados para linear approximation method
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The magnetic properties of Mn nanostructures on the Fe(001) surface have been studied using the noncollinear first-principles real space-linear muffin-tin orbital-atomic sphere approximation method within density-functional theory. We have considered a variety of nanostructures such as adsorbed wires, pyramids, and flat and intermixed clusters of sizes varying from two to nine atoms. Our calculations of interatomic exchange interactions reveal the long-range nature of exchange interactions between Mn-Mn and Mn-Fe atoms. We have found that the strong dependence of these interactions on the local environment, the magnetic frustration, and the effect of spin-orbit coupling lead to the possibility of realizing complex noncollinear magnetic structures such as helical spin spiral and half-skyrmion.
Resumo:
We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full nonlinear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of the order of t(iso) less than or similar to 1/T, with T the final equilibrium temperature. We comment on possible extensions to less symmetric situations.
Resumo:
This new and general method here called overflow current switching allows a fast, continuous, and smooth transition between scales in wide-range current measurement systems, like electrometers. This is achieved, using a hydraulic analogy, by diverting only the overflow current, such that no slow element is forced to change its state during the switching. As a result, this approach practically eliminates the long dead time in low-current (picoamperes) switching. Similar to a logarithmic scale, a composition of n adjacent linear scales, like a segmented ruler, measures the current. The use of a linear wide-range system based on this technique assures fast and continuous measurement in the entire range, without blind regions during transitions and still holding suitable accuracy for many applications. A full mathematical development of the method is given. Several computer realistic simulations demonstrated the viability of the technique.
Resumo:
The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones