9 resultados para interference of matter-wave
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Matter-wave superradiance is based on the interplay between ultracold atoms coherently organized in momentum space and a backscattered wave. Here, we show that this mechanism may be triggered by Mie scattering from the atomic cloud. We show how the laser light populates the modes of the cloud and thus imprints a phase gradient on the excited atomic dipoles. The interference with the atoms in the ground state results in a grating that in turn generates coherent emission, contributing to the backward light wave onset. The atomic recoil "halos" created by the Mie-scattered light exhibit a strong anisotropy, in contrast to single-atom scattering.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation.
Resumo:
The sugarcane root endophyte Trichoderma virens 223 holds enormous potential as a sustainable alternative to chemical pesticides in the control of sugarcane diseases. Its efficacy as a biocontrol agent is thought to be associated with its production of chitinase enzymes, including N-acetyl-beta-D-glucosaminidases, chitobiosidases and endochitinases. We used targeted gene deletion and RNA-dependent gene silencing strategies to disrupt N-acetyl-beta-D-glucosaminidase and endochitinase activities of the fungus, and to determine their roles in the biocontrol of soil-borne plant pathogens. The loss of N-acetyl-beta-D-glucosaminidase activities was dispensable for biocontrol of the plurivorous damping-off pathogens Rhizoctonia solani and Sclerotinia sclerotiorum, and of the sugarcane pathogen Ceratocystis paradoxa, the causal agent of pineapple disease. Similarly, suppression of endochitinase activities had no effect on R. solani and S. sclerotiorum disease control, but had a pronounced effect on the ability of T. virens 223 to control pineapple disease. Our work demonstrates a critical requirement for T. virens 223 endochitinase activity in the biocontrol of C. paradoxa sugarcane disease, but not for general antagonism of other soil pathogens. This may reflect its lifestyle as a sugarcane root endophyte.
Resumo:
The interference of some specific aqueous two-phase system (ATPS) phase-forming components in bovine serum albumin (BSA) determination by the Bradford method was investigated. For this purpose, calibration curves were obtained for BSA in the presence of different concentrations of salts and polymers. A total of 19 salts [Na2SO4, (NH4)(2)SO4, MgSO4, LiSO4, Na2HPO4, sodium phosphate buffer (pH 7.0), NaH2PO4, K2HPO4, potassium phosphate buffer (pH 7.0), KH2PO4, C6H8O7, Na3C6HSO7, KCHO2, NaCHO2, NaCO3, NaHCO3, C2H4O2, sodium acetate buffer (pH 4.5), and NaC2H3O2] and 7 polymers [PEG 4000, PEG 8000, PEG 20000, UCON 3900, Ficoll 70000, PES 100000, and PVP 40000] were tested, and each calibration curve was compared with the one obtained for BSA in water. Some concentrations of salts and polymers had considerable effect in the BSA calibration curve. Carbonate salts were responsible for the highest salt interference, whereas citric and acetic acids did not produce interference even in the maximum concentration level tested (5 wt%). Among the polymers, UCON gave the highest interference, whereas Ficoll did not produce interference when used in concentrations up to 10 wt%. It was concluded that a convenient dilution of the samples prior to the protein quantification is needed to ensure no significant interference from ATPS phase-forming constituents. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P > 0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P < 0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.
Resumo:
The addition of Cu2+ ions to the classical Fenton reaction (Fe2+ plus H2O2 at pH 3) is found to accelerate the degradation of organic compounds. This synergic effect causes an approximately 15 % additional reduction of the total organic carbon (TOC), representing an overall improvement of the efficiency of the mineralization of phenol. Although Fe2+ exhibits a high initial rate of degradation, the degradation is not complete due to the formation of compounds refractory to the hydroxyl radical. The interference of copper ions on the degradation of phenol by the Fenton reaction was investigated. In the presence of Cu2+, the degradation is slower, but results in a greater reduction of TOC at the end of the reaction (t = 120 min). In the final stages of the reaction, when the Fe3+ in the solution is complexed in the form of ferrioxalate, the copper ions assume the role of the main catalyst of the degradation
Resumo:
We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.
Resolution of isomeric multi-ruthenated porphyrins by travelling wave ion mobility mass spectrometry
Resumo:
The ability of travelling wave ion mobility mass spectrometry (TWIM-MS) to resolve cationic meta/para and cis/trans isomers of mono-, di-, tri- and tetra-ruthenated supramolecular porphyrins was investigated. All meta isomers were found to be more compact than the para isomers and therefore mixtures of all isomeric pairs could be properly resolved with baseline or close to baseline peak-to-peak resolution (Rp-p). Di-substituted cis/trans isomers were found, however, to present very similar drift times and could not be resolved. N-2 and CO2 were tested as the drift gas, and similar a but considerably better values of R-p and Rp-p were always observed for CO2. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
We investigated the transition to wave turbulence in a spatially extended three-wave interacting model, where a spatially homogeneous state undergoing chaotic dynamics undergoes spatial mode excitation. The transition to this weakly turbulent state can be regarded as the loss of synchronization of chaos of mode oscillators describing the spatial dynamics.