29 resultados para enamel matrix proteins
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Background: The aim of this study is to compare the macro- and microsurgery techniques for root coverage using a coronally positioned flap (CPF) associated with enamel matrix derivative (EMD). Methods: Thirty patients were selected for the treatment of localized gingival recessions (GRs) using CPF associated to EMD. Fifteen patients were randomly assigned to the test group (TG), and 15 patients were randomly assigned to the control group (CG). The microsurgical approach was performed in the TG, and the conventional macrosurgical technique was performed in the CG. The clinical parameters evaluated before surgery and after 6 months were GR, probing depth, relative clinical attachment level, width of keratinized tissue (WKT), and thickness of keratinized tissue (TKT). The discomfort evaluation was performed 1 week postoperative. Results: There were no statistically significant differences between groups for all parameters at baseline. At 6 months, there was no statistically significant difference between the techniques in achieving root coverage. The percentage of root coverage was 92% and 83% for TG and CG, respectively. After 6 months, there was a statistically significant increase of WKT and TKT in TG only. Both procedures were well tolerated by all patients. Conclusions: The macro- and microsurgery techniques provided a statistically significant reduction in GR height. After 6 months, there was no statistically significant difference between the techniques regarding root coverage, and the microsurgical technique demonstrated a statistically significant increase in WKT and TKT. J Periodontol 2010;81:1572-1579.
Resumo:
Aim: The aim of this randomized controlled clinical study was to compare the use of an acellular dermal matrix graft (ADMG) with or without the enamel matrix derivative (EMD) in smokers to evaluate which procedure would provide better root coverage. Material and Methods: Nineteen smokers with bilateral Miller Class I or II gingival recessions >= 3 mm were selected. The test group was treated with an association of ADMG and EMD, and the control group with ADMG alone. Probing depth, relative clinical attachment level, gingival recession height, gingival recession width, keratinized tissue width and keratinized tissue thickness were evaluated before the surgeries and after 6 months. Wilcoxon test was used for the statistical analysis at significance level of 5%. Results: No significant differences were found between groups in all parameters at baseline. The mean gain recession height between baseline and 6 months and the complete root coverage favored the test group (p = 0.042, p = 0.019 respectively). Conclusion: Smoking may negatively affect the results achieved through periodontal plastic procedures; however, the association of ADMG and EMD is beneficial in the root coverage of gingival recessions in smokers, 6 months after the surgery.
Resumo:
Abstract Background Extracellular matrix proteins are key factors that influence the regenerative capacity of tissues. The objective of the present study was to evaluate the effects of enamel matrix derivative (EMD), TGF-β1, and the combination of both factors (EMD+TGF-β1) on human osteoblastic cell cultures. Methods Cells were obtained from alveolar bone of three adult patients using enzymatic digestion. Effects of EMD, TGF-β1, or a combination of both were analyzed on cell proliferation, bone sialoprotein (BSP), osteopontin (OPN) and alkaline phosphatase (ALP) immunodetection, total protein synthesis, ALP activity and bone-like nodule formation. Results All treatments significantly increased cell proliferation compared to the control group at 24 h and 4 days. At day 7, EMD group showed higher cell proliferation compared to TGF-β1, EMD + TGF-β1 and the control group. OPN was detected in the majority of the cells for all groups, whereas fluorescence intensities for ALP labeling were greater in the control than in treated groups; BSP was not detected in all groups. All treatments decreased ALP levels at 7 and 14 days and bone-like nodule formation at 21 days compared to the control group. Conclusions The exposure of human osteoblastic cells to EMD, TGF-β1 and the combination of factors in vitro supports the development of a less differentiated phenotype, with enhanced proliferative activity and total cell number, and reduced ALP activity levels and matrix mineralization.
Resumo:
Aims: Guided tissue regeneration (GTR) and enamel matrix derivatives (EMD) are two popular regenerative treatments for periodontal infrabony lesions. Both have been used in conjunction with other regenerative materials. We conducted a Bayesian network meta-analysis of randomized controlled trials on treatment effects of GTR, EMD and their combination therapies. Material and Methods: A systematic literature search was conducted using the Medline, EMBASE, LILACS and CENTRAL databases up to and including June 2011. Treatment outcomes were changes in probing pocket depth (PPD), clinical attachment level (CAL) and infrabony defect depth. Different types of bone grafts were treated as one group and so were barrier membranes. Results: A total of 53 studies were included in this review, and we found small differences between regenerative therapies which were non-significant statistically and clinically. GTR and GTR-related combination therapies achieved greater PPD reduction than EMD and EMD-related combination therapies. Combination therapies achieved slightly greater CAL gain than the use of EMD or GTR alone. GTR with BG achieved greatest defect fill. Conclusion: Combination therapies performed better than single therapies, but the additional benefits were small. Bayesian network meta-analysis is a promising technique to compare multiple treatments. Further analysis of methodological characteristics will be required prior to clinical recommendations.
Resumo:
Iron has been suggested to reduce the erosive potential of cola drinks in vitro. Objective: The aim of this study was to evaluate in situ the effect of ferrous sulfate supplementation on the inhibition of the erosion caused by a cola drink. Material and Methods: Ten adult volunteers participated in a crossover protocol conducted in two phases of 5 days, separated by a washout period of 7 days. In each phase, they wore palatal devices containing two human enamel and two human dentin blocks. The volunteers immersed the devices for 5 min in 150 mL of cola drink (Coca-Cola (TM), pH 2.6), containing ferrous sulfate (10 mmol/L) or not (control), 4 times per day. The effect of ferrous sulfate on the inhibition of erosion was evaluated by profilometry (wear). Data were analyzed by paired t tests (p<0.05). Results: The mean wear (+/- se) was significantly reduced in the presence of ferrous sulfate, both for enamel (control: 5.8 +/- 1.0 mu m; ferrous sulfate: 2.8 +/- 0.6 mu m) and dentin (control: 4.8 +/- 0.8 mu m; ferrous sulfate: 1.7 +/- 0.7 mu m). Conclusions: The supplementation of cola drinks with ferrous sulfate can be a good alternative for the reduction of their erosive potential. Additional studies should be done to test if lower ferrous sulfate concentrations can also have a protective effect as well as the combination of ferrous sulfate with other ions.
Resumo:
In order to investigate the role of myoepithelial cell and tumor microenvironment in salivary gland neoplasma, we have performed a study towards the effect of different extracellular matrix proteins (basement membrane matrix, type I collagen and fibronectin) on morphology and differentiation of benign myoepithelial cells from pleomorphic adenoma cultured with malignant cell culture medium from squamous cell carcinoma. We have also analyzed the expression of alpha-smooth muscle actin (alpha-SMA) and FGF-2 by immunofluorescence and qPCR. Our immunofluorescence results, supported by qPCR analysis, demonstrated that alpha-SMA and FGF-2 were upregulated in the benign myoepithelial cells from pleomorphic adenoma in all studied conditions on fibronectin substratum. However, the myoepithelial cells on fibronectin substratum did not alter their morphology under malignant conditioned medium stimulation and exhibited a stellate morphology and, occasionally focal adhesions with the substratum. In summary, our data demonstrated that the extracellular matrix exerts an important role in the morphology of the benign myoepithelial cells by the presence of focal adhesions and also inducing increase FGF-2 and alpha-SMA expression by these cells, especially in the fibronectin substratum. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.
Resumo:
A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Resumo:
Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (similar to 47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.
Resumo:
Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 degrees C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Increased reactive oxygen species (ROS) promote matrix metalloproteinase (MMP) activities and may underlie cardiomyocyte injury and the degradation of cardiac troponin I (cTI) during acute pulmonary thromboembolism (APT). We examined whether pretreatment or therapy with tempol (a ROS scavenger) prevents MMP activation and cardiomyocyte injury of APT. Anesthetized sheep received tempol infusion (1.0 mg kg(-1) min(-1), i.v.) or saline starting 30 min before or 30 min after APT (autologous blood clots). Control animals received saline. Hemodynamic measurements were performed. MMPs were studied in the right ventricle (RV) by gelatin zymography, fluorimetric activity assay, and in situ zymography. The ROS levels were determined in the RV and cTI were measured in serum samples. APT increased the pulmonary arterial pressure and pulmonary vascular resistance by 146 and 164 %, respectively. Pretreatment or therapy with tempol attenuated these increases. While APT increased RV + dP/dt (max), tempol infusions had no effects. APT increased RV MMP-9 (but not MMP-2) levels. In line with these findings, APT increased RV MMP activities, and this finding was confirmed by in situ zymography. APT increased the RV ROS levels and tempol infusion, before or after APT, and blunted APT-induced increases in MMP-9 levels, MMP activities, in situ MMP activities, and ROS levels in the RV. cTI concentrations increased after APT, and tempol attenuated these increases. RV oxidative stress after APT increases the RV MMP activities, leading to the degradation of sarcomeric proteins, including cTI. Antioxidant treatment may prevent MMP activation and protect against cardiomyocyte injury after APT.
Resumo:
Extended excessive alcohol use causes changes in bone tissue, thus affecting osteogenesis. The objective of this study was to evaluate if demineralized bone matrix (Gen-ox (R)) associated with bone morphogenetic protein (Gen-pro (R)) changes bone neoformation in rats submitted to experimental alcoholism. Forty male rats (Rattus norvegicus) were separated into 2 groups of 20 animals each: Group E1, which received ethyl alcohol at 25% and had the surgical cavity filled in only with blood clot; and Group E2. which received ethyl alcohol at 25% and had the surgical cavity filled in with demineralized bovine cortical bone associated with bone morphogenetic protein. The animals were submitted to a three-week period of gradual adaptation to alcohol, and then continued receiving alcohol at 25% for 90 days, when the surgical cavity was made. After the surgery, the animals continued consuming alcohol until reaching the sacrifice periods of 10, 20, 40, and 60 days, when the tibias were removed for histological processing. Results showed that surgical cavity repair and bone marrow reorganization occurred faster in Group E1 than in Group E2. At the end of the experiment, it was observed that animals in Group E2 had thick bony trabeculae surrounding the implanted material particles and a small area of connective tissue in the surface region. In conclusion, the implanted material did not accelerate bone neoformation, rather it served as a structure for osteogenesis.
Resumo:
Aim This randomized, controlled, clinical study compared two surgical techniques for root coverage with the acellular dermal matrix graft (ADMG) to evaluate which procedure could provide better root coverage and greater amounts of keratinized tissue. Materials and Methods Fifteen pairs of bilateral Miller Class I or II gingival recessions were treated and assigned randomly to the test group, and the contra-lateral recessions were assigned to the control group. The ADMG was used in both groups. In the control group, the graft and flap were positioned at the level of the cemento-enamel junction (CEJ), and in the test group, the graft was positioned 1 mm apical to the CEJ and the flap 1 mm coronal to the CEJ. The clinical parameters were taken before the surgeries and after 6 months. The gingival recession area, a new parameter, was measured in standardized photographs through a special device and software. Results There were statistically significant differences favouring the proposed technique for all parameters except for the amount of keratinized tissue at 6 months. Conclusions The proposed test technique is more suitable for root coverage procedures with ADMG, and the new parameter evaluated appears valuable for root coverage analysis. (Clinicaltrials.gov Identifier: NCT01175720).
Resumo:
doi: 10.1111/j.1741-2358.2011.00526.x Biological evaluation of the bone healing process after application of two potentially osteogenic proteins: an animal experimental model Objective: The aim of this work was to analyse qualitatively and quantitatively the newly formed bone after insertion of rhBMP-2 and protein extracted from Hevea brasiliensis (P-1), associated or not with a carrier in critical bone defects created in Wistar rat calvarial bone, using histological and histomorphometrical analyses. Materials and methods: Eighty-four male Wistar rats were used, divided into two groups, according to the period of time until the sacrifice (2 and 6 weeks). Each one of these groups was subdivided into six groups with seven animals each, according to the treatments: (1) 5 mu g of pure rhBMP-2, (2) 5 mu g of rhBMP-2/monoolein gel, (3) pure monoolein gel, (4) 5 mu g of pure P-1, (5) 5 mu g of P-1/monoolein gel and (6) critical bone defect controls. The animals were euthanised and the calvarial bone tissue removed for histological and histomorphometrical analyses. Result and conclusion: The results showed an improvement in the bone healing process using the rhBMP-2 protein, associated or not with a material carrier in relation to the other groups, and this process demonstrated to be time dependent.