10 resultados para dietary fat
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The beta-adrenergic agonist ractopamine is increasingly used in the swine industry due to higher consumer demand for leaner pork products. Redirecting nutrients to favor leanness rather than fat deposition, ractopamine improves growth and carcass traits of finishing pigs. However, the impact of this agonist on pork quality is not clearly defined. Understanding the biological effects of dietary ractopamine dose, treatment period, lysine levels, and the lysine to metabolizable energy ratio will help pork producers achieve improvements in animal performance, carcass leanness, and economic efficiency in swine production systems.
Resumo:
Introduction: The identification of stages of dietary change and the factors affecting food choices can direct more effective nutritional intervention against coronary heart disease progression. Objective: Identify the stages of change of eating behavior and its relation with nutritional status, food consumption and previous cardiovascular events in patients who underwent coronary angioplasty. Methods: A cross-sectional study with 200 hospitalized patients from a specialized cardiology hospital, after elective coronary angioplasty. They were applied an algorithm that identifies the provision of change of eating habits for a healthier pattern. Variables measured were stages of change of eating behavior, nutritional status, food consumption and cardiovascular events (previous myocardial infarction or angioplasty). It was realized comparison of averages by analysis of variance or Student's test and Chi-square test for qualitative variables. Value of significance was taken at 5%. Results: The patients were classified in the following stages: 36% maintenance, 26% preparation, 17% precontemplation, 12% action and 9% contemplation. It was observed higher cardiovascular events in maintenance/action group (p = 0.04), higher consumption of calories (p = 0.04), meat/eggs (p = 0.01) and sweets (p = 0.03) in preparation stage, comparing to maintenance group, and no association between nutritional status and stages of change (p = 0.13), although 62% of the individuals in maintenance stage were overweight. Conclusions: This work contributed to identifying the stages of change and conditions that favor changes in eating pattern. Even patients that classified themselves into the maintenance stage need to adjust their eating habits in order to reach a healthy weight.
Resumo:
Abstract Aim The purpose of the present study was to assess the dietary fat intake, glucose, insulin, Homeostasis model assessment for insulin resistance HOMA-IR, and endotoxin levels and correlate them with adipokine serum concentrations in obese adolescents who had been admitted to long-term interdisciplinary weight-loss therapy. Design The present study was a longitudinal clinical intervention of interdisciplinary therapy. Adolescents (n = 18, aged 15–19 y) with a body mass index > 95th percentile were admitted and evaluated at baseline and again after 1 year of interdisciplinary therapy. We collected blood samples, and IL-6, adiponectin, and endotoxin concentrations were measured by ELISA. Food intake was measured using 3-day diet records. In addition, we assessed glucose and insulin levels as well as the homeostasis model assessment for insulin resistance (HOMA-IR). Results The most important finding from the present investigation was that the long-term interdisciplinary lifestyle therapy decreased dietary fat intake and endotoxin levels and improved HOMA-IR. We observed positive correlations between dietary fat intake and endotoxin levels, insulin levels, and the HOMA-IR. In addition, endotoxin levels showed positive correlations with IL-6 levels, insulin levels and the HOMA-IR. Interestingly, we observed a negative correlation between serum adiponectin and both dietary fat intake and endotoxin levels. Conclusions The present results indicate an association between dietary fat intake and endotoxin level, which was highly correlated with a decreased pro-inflammatory state and an improvement in HOMA-IR. In addition, this benefits effect may be associated with an increased adiponectin level, which suggests that the interdisciplinary therapy was effective in improving inflammatory pathways.
Resumo:
High intake of saturated fat from meats has been associated with cardiovascular disease, cancer, diabetes, and others diseases. In this paper, we are introducing a simple, high-throughput, and non-destructive low-resolution nuclear magnetic resonance method that has the potential to analyze the intramuscular fat content (IMF) in more than 1,000 beef portions per hour. The results can be used in nutritional fact labels, replacing the currently used average value. The method is based on longitudinal (T(1)) and transverse (T(2)) relaxation time information obtained by a continuous wave-free precession (CWFP) sequence. CWFP yields a higher correlation coefficient (r=0.9) than the conventional Carr-Purcell-Meiboom- Gill (CPMG) method (r=-0.25) for IMF in beef and is just as fast and a simpler pulse sequence than CPMG. The method can also be applied to other meat products.
Resumo:
Several biological and clinical studies have suggested that conjugated linoleic acid (CLA) prevents body fat accumulation and increases lean body mass. CLA is available as a concentrated dietary supplement and is purported to provide the aforementioned benefits for people who perform physical activity. This study was conducted to evaluate the effect of a CLA-supplemented diet combined with physical activity on the body composition of Wistar rats. Two groups of Wistar rats of both sexes, between 45 and 60 days old, were fed a diet containing 5.5% soybean oil (control group) or a CLA-supplemented diet (0.5% CLA and 5.0% soybean oil) (test group). Half the rats in both groups were assigned to exercise by running on a treadmill. The biochemical and anatomical body compositions were analyzed. In both groups, CLA had no effect on the dietary consumption or the weight of the liver, heart, and lungs. However, it did influence the overall weight gain of exercised male rats and the chemical and anatomical body composition in exercised and sedentary rats of both sexes. The results confirm that a CLA-supplemented diet with and without physical activity reduced body fat accumulation in rats of both sexes. However, there is no evidence of an increase in the lean body mass of the exercised rats.
Resumo:
The objective of this study was to evaluate the effect of lipid and selenium sources in diets for finishing Nellore steers on the fatty acid composition and selenium concentration of the longissimus muscle. Fifty Nellore steers (body weight = 458 +/- 39 kg) were assigned to one of six dietary treatments: 1) diet containing sunflower seed and inorganic selenium; 2) sunflower seed and organic selenium; 3) whole cottonseed and inorganic selenium; 4) whole cottonseed and organic selenium; 5) soybeans and inorganic selenium; and 6) soybeans and organic selenium. Diets were formulated with the same amount of nitrogen and calories and supplied once daily to steers in collective pens, with three animals per pen, for 120 d. At the end of the trial, steers were slaughtered and samples of the longissimus muscle were collected for fatty acid and selenium analysis. Effect of selenium sources was detected for selenium concentration in the longissimus muscle. Organic selenium had higher concentrations in the meat compared with inorganic selenium. The total saturated, monounsaturated and polyunsaturated fatty acids did not differ between the sources of lipids and selenium. For selenium sources, no differences were observed between the concentrations of polyunsaturated fat. Also, no differences in C18:2 cis-9 trans-11 concentrations were noted; however, steers fed sunflower seed presented greater proportions of this fatty acid in the meat. The results indicated that the use of sunflower seed, cottonseed or soybeans and organic or inorganic selenium in feedlot diets to Nellore cattle does not alter the great part of the fatty acid profile of the longissimus muscle. However, the inclusion of sunflower seed in the diet increases the meat CLA cis-9, trans-11, which is desirable and beneficial for the health of consumers.
Resumo:
Objective: Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Methods: Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Results: Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. Conclusion: The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Context: Liposuction is suggested to result in long-term body fat regain that could lead to increased cardiometabolic risk. We hypothesized that physical activity could prevent this effect. Objective: Our objective was to investigate the effects of liposuction on body fat distribution and cardiometabolic risk factors in women who were either exercise trained or not after surgery. Design, Setting, and Participants: Thirty-six healthy normal-weight women participated in this 6-month randomized controlled trial at the University of Sao Paulo, Sao Paulo, Brazil. Interventions: Patients underwent a small-volume abdominal liposuction. Two months after surgery, the subjects were randomly allocated into two groups: trained (TR, n = 18, 4-month exercise program) and nontrained (NT, n = 18). Main Outcome Measures: Body fat distribution (assessed by computed tomography) was assessed before the intervention (PRE) and 2 months (POST2), and 6 months (POST6) after surgery. Secondary outcome measures included body composition, metabolic parameters and dietary intake, assessed at PRE, POST2, and POST6, and total energy expenditure, physical capacity, and sc adipocyte size and lipid metabolism-related gene expression, assessed at PRE and POST6. Results: Liposuction was effective in reducing sc abdominal fat (PRE vs. POST2, P = 0.0001). Despite the sustained sc abdominal fat decrement at POST6 (P = 0.0001), the NT group showed a significant 10% increase in visceral fat from PRE to POST6 (P = 0.04; effect size = -0.72) and decreased energy expenditure (P = 0.01; effect size = 0.95) when compared with TR. Dietary intake, adipocyte size, and gene expression were unchanged over time. Conclusion: Abdominal liposuction does not induce regrowth of fat, but it does trigger a compensatory increase of visceral fat, which is effectively counteracted by physical activity. (J Clin Endocrinol Metab 97: 2388-2395, 2012)
Resumo:
This study aimed to investigate the effect of a high-protein diet on growth, body composition, and protein nutritional status of young rats. Newly-weaned Wistar rats, weighing 45-50 g, were distributed in two experimental groups, according to their diets, which contained 12% (G12) or 26% protein (G26), over a period of 3 weeks. The animals were euthanized at the end of this period and the following analyses were performed: chemical composition of the carcass, proteoglycan synthesis, IGF-I concentration (serum, muscle and cartilage), total tissue RNA, protein concentration (muscle and cartilage) and protein synthesis (muscle and cartilage). The high-protein diet was found to result in a higher fat-free mass and lower fat mass in the carcass, with no difference in growth or protein nutritional status.
Resumo:
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2months old and 8months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases