19 resultados para asynchronous generators
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The integrated production scheduling and lot-sizing problem in a flow shop environment consists of establishing production lot sizes and allocating machines to process them within a planning horizon in a production line with machines arranged in series. The problem considers that demands must be met without backlogging, the capacity of the machines must be respected, and machine setups are sequence-dependent and preserved between periods of the planning horizon. The objective is to determine a production schedule to minimise the setup, production and inventory costs. A mathematical model from the literature is presented, as well as procedures for obtaining feasible solutions. However, some of the procedures have difficulty in obtaining feasible solutions for large-sized problem instances. In addition, we address the problem using different versions of the Asynchronous Team (A-Team) approach. The procedures were compared with literature heuristics based on Mixed Integer Programming. The proposed A-Team procedures outperformed the literature heuristics, especially for large instances. The developed methodologies and the results obtained are presented.
Resumo:
The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Synchronous distributed generators are prone to operate islanded after contingencies, which is usually not allowed due to safety and power-quality issues. Thus, there are several anti-islanding techniques; however, most of them present technical limitations so that they are likely to fail in certain situations. Therefore, it is important to quantify and determine whether the scheme under study is adequate or not. In this context, this paper proposes an index to evaluate the effectiveness of anti-islanding frequency-based relays commonly used to protect synchronous distributed generators. The method is based on the calculation of a numerical index that indicates the time period that the system is unprotected against islanding considering the global period of analysis. Although this index can precisely be calculated based on several electromagnetic transient simulations, a practical method is also proposed to calculate it directly from simple analytical formulas or lookup tables. The results have shown that the proposed approach can assist distribution engineers to assess and set anti-islanding protection schemes.
Resumo:
In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).
Resumo:
In the developed world, grid-connected photovoltaics (PVs) are the fastest-growing segment of the energy market. From 1999 to 2009, this industry had a 42% compound annual growth-rate. From 2009 to 2013, it is expected to grow to 45%, and in 2013 the achievement of grid parity - when the cost of solar electricity becomes competitive with conventional retail (including taxes and charges) grid-supplied electricity - is expected in many places worldwide. Grid-connected PV is usually perceived as an energy technology for developed countries, whereas isolated, stand-alone PV is considered as more suited for applications in developing nations, where so many individuals still lack access to electricity. This rationale is based on the still high costs of PV when compared with conventional electricity. We make the case for grid-connected PV generation in Brazil, showing that with the declining costs of PV and the rising prices of conventional electricity, urban populations in Brazil will also enjoy grid parity in the present decade. We argue that governments in developing nations should act promptly and establish the mandates and necessary conditions for their energy industry to accumulate experience in grid-connected PV, and make the most of this benign technology in the near future. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Amazonian lowlands include large patches of open vegetation which contrast sharply with the rainforest, and the origin of these patches has been debated. This study focuses on a large area of open vegetation in northern Brazil, where d13C and, in some instances, C/N analyses of the organic matter preserved in late Quaternary sediments were used to achieve floristic reconstructions over time. The main goal was to determine when the modern open vegetation started to develop in this area. The variability in d13C data derived from nine cores ranges from -32.2 to -19.6 parts per thousand, but with nearly 60% of data above -26.5 parts per thousand. The most enriched values were detected only in ecotone and open vegetated areas. The development of open vegetation communities was asynchronous, varying between estimated ages of 6400 and 3000 cal a BP. This suggests that the origin of the studied patches of open vegetation might be linked to sedimentary dynamics of a late Quaternary megafan system. As sedimentation ended, this vegetation type became established over the megafan surface. In addition, the data presented here show that the presence of C4 plants must be used carefully as a proxy to interpret dry paleoclimatic episodes in Amazonian areas. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
This study provides the first detailed information on the reproductive biology of the smooth butterfly ray Gymnura micrura. A total of 905 individuals were sampled, 377 of which were used for the reproductive study. Juveniles accounted for 75% of the sample, but all life cycle stages were present in the study area. The disc width at which 50% were mature (WD50)was estimated at 269 and 405 mm for males and females, respectively. The WD50V(based on the onset of vitellogenesis) was estimated at 359 mm. Uterine fecundity (mean +/- s.d. = 3.8 +/- 1.3; range: 16) was positively correlated with female size. A 3564% gain in mean wet mass was observed from egg to full-term embryo in utero. Size at birth ranged from 135 to 175 mm WD (19.5 to 55.0 g), with a mean of 165.1 mm WD (43.3 g). The embryo sex ratio was not significantly different from 1:1. The ovaries of pregnant females were undergoing vitellogenesis during gestation, with females ready to ovulate soon after parturition. Gymnura micrura may have an asynchronous reproductive cycle, with females reproducing continuously throughout the year.
Resumo:
Long-term synaptic plasticity has been recently described in brainstem areas associated to visceral afferent sensory integration. Chronic intermittent hypoxia (CIH), an animal model for studying obstructive sleep apnea in humans, depresses the afferent neurotransmission in nucleus tractus solitarii (NTS) neurons, which affect respiratory and autonomic regulation. Here we identified the synaptic mechanisms of CIH-induced depression of the afferent neurotransmission in NTS neurons in juvenile rats. We verified that CIH reduced the amplitude of both NMDA and non-NMDA glutamatergic excitatory currents (eEPSCs) evoked by tractus solitarii stimulation (TS-eEPSC) of second-order neurons in the NTS. No changes were observed in release probability, evidenced by absence of any CIH-elicited effects on short-term depression and failures in EPSCs evoked in low calcium. CIH also produced no changes in TS-eEPSC quantal size, since the amplitudes of both low calcium-evoked EPSCs and asynchronous TS-eEPSCs (evoked in the presence of Sr2+) were unchanged. Using single TS afferent fiber stimulation in slices from control and CIH rats we clearly show that CIH reduced the quantal content of the TS-eEPSCs without affecting the quantal size or release probability, suggesting a reduction in the number of active synapses as the mechanism of CIH induced TS-eEPSC depression. In accordance with this concept, the input-output relationship of stimulus intensity and TS-eEPSC amplitude shows an early saturation in CIH animals. These findings open new perspectives for a better understanding of the mechanisms underlying the synaptic plasticity in the brainstem sensory neurons under challenges such as those produced by CIH in experimental and pathological conditions.
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
The nesting biology and social behavior of the euglossine bee species Euglossa melanotricha was analyzed based on the monitoring of eight nests found in man-made cavities and transferred to observation boxes. Euglossa melanotricha females usually construct their nests in cavities in the ground, in buildings, or in mounds. In this study, we present new data on the nesting biology of E. melanotricha. The process of reactivation of nests was commonly observed with one to three females participating in the reactivation. The duration of the process of reactivation ranged from 10 to 78 days (n = 31) and were longer during the rainy season. Time spent (in days) for provisioning, oviposition and closing a single cell was higher in reactivations that occurred during the dry period. 151 emergences were observed (39 males and 112 females). 90 (80.3%) of the emerged females returned to the natal nest, but only 35(38.9%) remained and actively participated in the construction and provisioning of cells. The other 55 abandoned the nests after several days without performing any work in the nest. Matrifilial nest structure was regulated by dominance-subordinate aggressive behavior among females, where the dominant female laid almost all eggs. Task allocation was recognized by behavioral characteristics, namely, agonism and oophagy in cells oviposited by other females. Euglossa melanotricha is multivoltine and its nesting is asynchronous with respect to season. Our observations suggest a primitively eusocial organization. These observations of E. melanotricha provide valuable information for comparison with other species of Euglossa in an evolutionary context.
Resumo:
It is thought that speciation in phytophagous insects is often due to colonization of novel host plants, because radiations of plant and insect lineages are typically asynchronous. Recent phylogenetic comparisons have supported this model of diversification for both insect herbivores and specialized pollinators. An exceptional case where contemporaneous plant-insect diversification might be expected is the obligate mutualism between fig trees (Ficus species, Moraceae) and their pollinating wasps (Agaonidae, Hymenoptera). The ubiquity and ecological significance of this mutualism in tropical and subtropical ecosystems has long intrigued biologists, but the systematic challenge posed by >750 interacting species pairs has hindered progress toward understanding its evolutionary history. In particular, taxon sampling and analytical tools have been insufficient for large-scale cophylogenetic analyses. Here, we sampled nearly 200 interacting pairs of fig and wasp species from across the globe. Two supermatrices were assembled: on an average, wasps had sequences from 77% of 6 genes (5.6 kb), figs had sequences from 60% of 5 genes (5.5 kb), and overall 850 new DNA sequences were generated for this study. We also developed a new analytical tool, Jane 2, for event-based phylogenetic reconciliation analysis of very large data sets. Separate Bayesian phylogenetic analyses for figs and fig wasps under relaxed molecular clock assumptions indicate Cretaceous diversification of crown groups and contemporaneous divergence for nearly half of all fig and pollinator lineages. Event-based cophylogenetic analyses further support the codiversification hypothesis. Biogeographic analyses indicate that the present-day distribution of fig and pollinator lineages is consistent with a Eurasian origin and subsequent dispersal, rather than with Gondwanan vicariance. Overall, our findings indicate that the fig-pollinator mutualism represents an extreme case among plant-insect interactions of coordinated dispersal and long-term codiversification.
Resumo:
We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.
Resumo:
Direct borohydride fuel cells (DBFCs) are attractive energy generators for powering portable electronic devices, mainly due to their high energy density and number of electrons per borohydride ion. However, the lack of a highly efficient electrocatalyst for the borohydride oxidation reaction limits the performance of these devices. The most commonly studied electrocatalysts for this reaction are composed of gold and platinum. Nevertheless, for these metals, the borohydride electrooxidation reaction mechanism (BOR) is not completely understood, and the total oxidation reaction, involving eight electrons per BH4- species, competes with parallel reactions, with a lower number of exchanged electrons and/or with heterogeneous chemical hydrolysis. Considering the above-mentioned issues, this work presents recent advances in the knowledge of the BOR pathways on polycrystalline (bulk) Au and Pt electrocatalysts. It presents the studies of the BOR reaction on Au and Pt electrodes using in situ Fourier Transform Infrared Spectroscopy (FUR), and on-line Differential Electrochemical Mass Spectrometry (DEMS). The spectroscopic and spectrometric data provided physical evidence of intermediate species and the formation of H-2 in the course of the BOR as a function of the electrode potential. These results enabled to advance in the knowledge about the BOR pathways on Au and Pt electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Measurements of the sphericity of primary charged particles in minimum bias proton-proton collisions at root s = 0.9, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is measured in the plane perpendicular to the beam direction using primary charged tracks with p(T) > 0.5 GeV/c in vertical bar eta vertical bar < 0.8. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity (N-ch) is reported for events with different p(T) scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low N-ch, whereas the event generators show an opposite tendency. The combined study of the sphericity and the mean p(T) with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.