21 resultados para ZINC(II) COMPLEXES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexes [Cu(2AcPh)Cl]center dot 2H(2)O (1), [Cu(2AcpClPh)Cl]center dot 2H(2)O (2), [Cu(2AcpNO(2)Ph)Cl] (3), [Cu(2BzPh)Cl] (4). [Cu(2BzpClPh)Cl] (5) and [Cu(2BzpNO(2)Ph)Cl] (6) were obtained with 2-acetylpyridine-phenylhydrazone (H2AcPh), 2-acetylpyridine-para-chloro-phenylhydrazone (H2AcpClPh), 2-acetylpyridine-para-nitro-phenylhydrazone (H2AcpNO(2)Ph), 2-benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh) and 2-benzoylpyridine-para-nitro-phenylhydrazone (H2BzpNO(2)Ph). The hydrazones showed poor antibacterial effect against Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa but demonstrated significant antifungal activity against Candida albicans. Upon coordination to copper(II) the antibacterial and antifungal activities appreciably increased. H2AcpClPh, H2BzpClPh and their copper(II) complexes (2) and (5), respectively, were as active as fluconazole against C. albicans. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3(+) + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Acetylpyridine-phenylhydrazone (H2AcPh), its para-chlorophenylhydrazone (H2AcpClPh) and para-nitrophenylhydrazone (H2AcpNO(2)Ph) analogues, the corresponding 2-benzoylpyridine-derived hydrazones (H2BzPh, H2BzpClPh and H2BzpNO(2)Ph) and their gallium(III) complexes were assayed for their cytotoxic activity against U87 (expressing wild-type p53 protein) and T98 (expressing mutant p53 protein) glioma cells. IC50 values against both glioma cells and against the MRC5 (human fetal lung fibroblast) lineage were obtained for the hydrazones, but not for their gallium(III) complexes, due to their low solubility. Hydrazones were highly cytotoxic at nanomolar doses against U87 and T98 cells. The therapeutic indexes (TI = IC50MRC5/IC50glioma) were 2-660 for T98 cells and 28-5000 for U87 cells, indicating that the studied hydrazones could be good antitumor drug candidates to treat brain tumors. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(Diphenylphosphinomethyl)aniline. H2L1, reacts with [RuCl2(PPh3)(3)] to yield the monomeric complexes [RuCl2(H2L1)(PPh3)(CH3CN)], [RuCl2(H2L1)(2)]and the chloro-bridged dimer [(H2L1)(PPh3)Ru(mu-Cl)(2)Ru(PPh3) (H2L1)] depending on the conditions applied. Exclusively the monochelate [RuCl2 (H2L1)(dmso)(2)] is formed during reactions of H2L1 with [RuCl2(dmso)(4)]. H2L1 acts as a neutral, bidentate ligand in all complexes. The products are studied spectroscopically and by X-ray diffraction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schiff base ligand: N,N'-bis(1-phenylethylidene)ethane-1,2-diamine (L), was derived from acetophenone and ethylenediamine by condensation and its complexes (1-5) were prepared with Pb2+, Ni2+, Co2+, Cu2+ and Cd2+ metal ions. Their structures were characterized by FAB-MS, IR spectra, elemental analyses and molar conductance. The octahedral geometry of the complexes was proposed by electronic spectra and magnetic moment data. The conductivity data showed that the complexes have non-electrolytic nature. The complexes (1-5) have higher in vitro antimicrobial activity than the Schiff base ligand (L). In the nuclease activity, the complexes cleave DNA as compared to control DNA in the presence of H2O2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper complexes with fluorinated beta-diketones were synthesized and characterized in terms of lipophilicity and peroxide-assisted oxidation of dihydrorhodamine as an indicator of redox activity. The biological activity of the complexes was tested against promastigotes of Leishmania amazonensis. Inhibition of trypanosomatid-specific trypanothione reductase was also tested. It was found that the highly lipophilic and redox-active bis(trifluoroacetylacetonate) derivative had increased toxicity towards promastigotes. These results indicate that it is possible to modulate the activity of metallodrugs based on redox-active metals through the appropriate choice of lipophilic chelators in order to design new antileishmanials. Further work will be necessary to improve selectivity of these compounds against the parasite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two novel dinuclear complexes involving the antihypertensive drug valsartan and copper(II) ion have been prepared in water and DMSO. The complex compositions were determined as: [Cu(vals)(H(2)O)(3)](2)center dot 6H(2)O and [Cu(vals)(H(2)O)(2)DMSO](2)center dot 2H(2)O. They were thoroughly characterized by elemental and thermal analysis, spectrophotometric titrations and UV-visible, diffuse reflectance, FTIR, Raman and EPR spectroscopies. No effect of the ligand on two tested osteoblastic cell lines in culture (one normal MOT3E1 and one tumoral UMR106) was observed in concentrations up to 100 mu M. Higher concentrations of Valsartan are required to induce cytotoxicity in both cell lines. The antiproliferative effect of the tested complex ([Cu(vals) (H(2)O)(3)](2)center dot 6H(2)O) in a dose-response manner, was higher in the UMR106 osteoblastic cell line than that of the MC3T3E1 normal line at concentrations >= 100 mu M. Morphological alterations are in accordance with proliferative observations. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the interference of Zn2+ ions on phenol degradation by Fenton reaction (Fe2+/Fe3+ + H2O2) is reported. One of the first intermediates formed in the reaction, catechol, can reduce Fe3+ to Fe2+ and, in the presence of H2O2 initiates an efficient catalytic redox cycle. In the initial stages of the reaction, this catechol-mediated cycle becomes the principal route of thermal degradation of phenol and its oxidation products. The Zn2+ ion addition enhances the persistence time of catechol, probably by stabilization of the corresponding semiquinone radical via complexation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixed ruthenium(II) complexes trans-[RuCl(2)(PPh(3))(2)(bipy)] (1), trans-[RuCl(2)(PPh(3))(2)(Me(2)bipy)](2), cis-[RuCl(2)(dcype)(bipy)](3), cis-[RuCl(2)(dcype)(Me(2)bipy)](4) (PPh(3) = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2'-bipyridine, Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(=C=CHPh)(PPh(3))(2)(bipy)]PF(6) (5), [RuCl(=C=CHPh)(PPh(3))(2)(Me(2)bipy)]PF(6) (6), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (7), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the pi-pi* excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH(2)Cl(2), CH(3)CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(-0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)(4)N](2)]Cu(C2O4)(2)] center dot H2O}(n) (1) [(CH3)(4)N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(H) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1)cm(-1), the Hamiltonian being defined as H = -J Sigma nm S-i . S-j]. This value is analyzed and discussed in the light of available magnetostructural data for oxalate-bridged copper(H) complexes with the same out-of-plane exchange pathway. (C) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The title compound [Ni(C20H15N2OS)(2)] is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, H-1 and C-13 NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two N-benzoyl-N',N'-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually cis to each other. The substance crystallizes triclinic (P-1 space group) with cell dimensions a = 10.7262(9) , b = 12.938(3) , c = 14.2085(12) , alpha = 74.650(4)A degrees, beta = 78.398(4)A degrees, gamma = 68.200(5)A degrees, and two formula units in the unit cell. The structure is very close to the related N-(2-furoyl) Ni complex reported previously.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A theoretical study of structures of the 1,7,1 l,17-tetraoxa-2,6,12,16-tetraaza-cycloeicosane ligand ([20]AneN(4)O(4)) coordinated to Fe2+, Co2+, Ni2+, Ru2+, Rh2+, and Pd2+ transition metals ions was carried out with the DFT/B3LYP method. Complexes were fully optimized in C-s symmetry with the metal ions coordinated either to nitrogen (1a) or oxygen atoms (1b). For all the cases performed in this work, 1a was always more stable than 1b. Considering each row it is possible to see that the binding energy increases with the atomic number. The M2+ cation binding energies increase in the following order: Fe2+ < Ru2+ < Co2+ < Ni2+ < Rh2+ < Pd2+. In addition, it was observed the preference of Pd2+ and Rh2+ complexes for a tetrahedral arrangement, while Fe2+, Ru2+, Co2+, Ni2+ complexes had a preference for the octahedral arrangement. From the orbital representation results, it was seen that 1b unsymmetrical orbitals may influence the susceptibility over metal ions orientation toward heteroatoms orbitals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu-2(Fasp)(4)(MeCN)(2)] center dot 2MeCN (1), [Cu-2(Clasp)(4)(MeCN)(2)]center dot 2MeCN (2), [Cu-2(Brasp)(4) (MeCn)(2)] center dot 2MeCn (3), {[Cu-2(Fasp)(4)(Pyrz)] center dot 2MeCN}(n) (4) {[Cu-2(Clasp)(4)(Pyrz)] center dot 2MeCN}(n) (5), [Cu-2(Brasp)(4)(Pyrz)](n) (6), [Cu-2(Clasp)(4)(4,4'-Bipy)](n) (7), and [Cu-2(Brasp)(4)(4,4'-Bipy)](n) (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4'-Bipy: 4,4'-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complexes of the type {[(pyS)Ru(NH3)(4)](2)-mu-L}(n), where pyS = 4-mercaptopyridine, L = 4,4'-dithiodipyridine (pySSpy), pyrazine (pz) and 1,4-dicyanobenzene (DCB), and n = +4 and +5 for fully reduced and mixed-valence complexes, respectively, were synthesized and characterized. Electrochemical data showed that there is electron communication between the metal centers with comproportionation constants of 33.2, 1.30 x 10(8) and 5.56 x 10(5) for L = pySSpy, pz and DCB, respectively. It was also observed that the electronic coupling between the metal centers is affected by the p-back-bonding interaction toward the pyS ligand. Raman spectroscopy showed a dependence of the intensity of the vibrational modes on the exciting radiations giving support to the assignments of the electronic transitions. The degree of electron communication between the metal centers through the bridging ligands suggests that these systems can be molecular wire materials.