7 resultados para Synchronous generators
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
Synchronous distributed generators are prone to operate islanded after contingencies, which is usually not allowed due to safety and power-quality issues. Thus, there are several anti-islanding techniques; however, most of them present technical limitations so that they are likely to fail in certain situations. Therefore, it is important to quantify and determine whether the scheme under study is adequate or not. In this context, this paper proposes an index to evaluate the effectiveness of anti-islanding frequency-based relays commonly used to protect synchronous distributed generators. The method is based on the calculation of a numerical index that indicates the time period that the system is unprotected against islanding considering the global period of analysis. Although this index can precisely be calculated based on several electromagnetic transient simulations, a practical method is also proposed to calculate it directly from simple analytical formulas or lookup tables. The results have shown that the proposed approach can assist distribution engineers to assess and set anti-islanding protection schemes.
Resumo:
An experimental platform that allows application of internal faults on the armature windings of a specially modified synchronous generator in a controlled environment is described. It allows recording and studying current and voltage waveforms of internal fault conditions that may occur in a synchronous generator. Thus, traditional and new protection functions can be tested by using real data, and the transient response of the machine due to internal faults can be analyzed more closely. The hardware-software platform is described in detail, as well as all its control functions. The results can contribute significantly in new protection developments, as well as for educational purposes.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
This paper presents a method for electromagnetic torque ripple and copper losses reduction in (non-sinusoidal or trapezoidal) surface-mount permanent magnet synchronous machines (SM-PMSM). The method is based on an extension of classical dq transformation that makes it possible to write a vectorial model for this kind of machine (with a non-sinusoidal back-EMF waveform). This model is obtained by the application of that transformation in the classical machine per-phase model. That transformation can be applied to machines that have any type of back-EMF waveform, and not only trapezoidal or square-wave back-EMF waveforms. Implementation results are shown for an electrical converter, using the proposed vectorial model, feeding a non-sinusoidal synchronous machine (brushless DC motor). They show that the use of this vectorial mode is a way to achieve improvements in the performance of this kind of machine, considering the electromagnetic torque ripple and copper losses, if compared to a drive system that employs a classical six-step mode as a converter. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In Kantor and Trishin (1997) [3], Kantor and Trishin described the algebra of polynomial invariants of the adjoint representation of the Lie superalgebra gl(m vertical bar n) and a related algebra A, of what they called pseudosymmetric polynomials over an algebraically closed field K of characteristic zero. The algebra A(s) was investigated earlier by Stembridge (1985) who in [9] called the elements of A(s) supersymmetric polynomials and determined generators of A(s). The case of positive characteristic p of the ground field K has been recently investigated by La Scala and Zubkov (in press) in [6]. We extend their work and give a complete description of generators of polynomial invariants of the adjoint action of the general linear supergroup GL(m vertical bar n) and generators of A(s).