20 resultados para Steel roof battens

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows the results of an experimental investigation carried out on a connection element of glulam and concrete composite structures, through double-sided push-out shear tests. The connection system was composed of perforated steel plates glued with epoxy adhesive. Five specimens were made and tested under shear forces. This innovative connection system showed an average initial slip modulus equivalent to 339.4 kN/mm. In addition, the connection system was evaluated by means of numerical simulations and the software ANSYS was used for this purpose. The numerical simulations demonstrated good agreement with the experimental data, especially in the regime of elastic-linear behavior of materials. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic behaviour of most commercial ferromagnetic steels is usually anisotropic presenting a magnetic easy axis. Changes in the direction of this axis can be related to mechanical changes and anomalies that occur in the fabrication process. The present work describes a method that uses a device with permanent magnets to create a precise rotational magnetic field. The device measures continuous Magnetic Barkhausen Noise signals related to the angle of magnetization, in order to determine the direction of the macroscopic magnetic easy axis. It also offers the possibility of obtaining real time parameters that quantify the magnetic anisotropy of the sample. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of delta ferrite fraction was measured with the magnetic method in specimens of different stainless steel compositions cast by the investment casting (lost wax) process. Ferrite fraction measurements published in the literature for stainless steel cast samples were added to the present work data, enabling an extensive analysis about practical methods to calculate delta ferrite fractions in stainless steel castings. Nineteen different versions of practical methods were formed using Schaeffler, DeLong, and Siewert diagrams and the nickel and chromium equivalent indexes suggested by several authors. These methods were evaluated by a detailed statistical analysis, showing that the Siewert diagram, including its equivalent indexes and iso-ferrite lines, gives the lowest relative errors between calculated and measured delta ferrite fractions. Although originally created for stainless steel welds, this diagram gives relative errors lower than those for the current ASTM standard method (800/A 800M-01), developed to predict ferrite fractions in stainless steel castings. Practical methods originated from a combination of different chromium/nickel equivalent indexes and the iso-ferrite lines from Schaeffler diagram give the lowest relative errors when compared with combinations using other iso-ferrite line diagrams. For the samples cast in the present work, an increase in cooling rate from 0.78 to 2.7 K/s caused a decrease in the delta ferrite fraction, but a statistical hypothesis test revealed that this effect is significant in only 50% of the samples that have ferrite in their microstructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study of pulsed nitriding in AISI H13 tool steel at low temperature (400 degrees C) is reported for several durations. X-ray diffraction results reveal that a nitrogen enriched compound (epsilon-Fe2-3N, iron nitride) builds up on the surface within the first process hour despite the low process temperature. Beneath the surface, X-ray Wavelength Dispersive Spectroscopy (WDS) in a Scanning Electron Microscope (SEM) indicates relatively higher nitrogen concentrations (up to 12 at.%) within the diffusion layer while microscopic nitrides are not formed and existing carbides are not dissolved. Moreover, in the diffusion layer, nitrogen is found to be dispersed in the matrix and forming nanosized precipitates. The small coherent precipitates are observed by High-Resolution Transmission Electron Microscopy (HR-TEM) while the presence of nitrogen is confirmed by electron energy loss spectroscopy (EELS). Hardness tests show that the material hardness increases linearly with the nitrogen concentration, reaching up to 14.5 GPa in the surface while the Young Modulus remains essentially unaffected. Indeed, the original steel microstructure is well preserved even in the nitrogen diffusion layer. Nitrogen profiles show a case depth of about similar to 43 mu m after nine hours of nitriding process. These results indicate that pulsed plasma nitriding is highly efficient even at such low temperatures and that at this process temperature it is possible to form thick and hard nitrided layers with satisfactory mechanical properties. This process can be particularly interesting to enhance the surface hardness of tool steels without exposing the workpiece to high temperatures and altering its bulk microstructure. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pack chromising treatment is an environmentally friendly alternative to hard chromium to form wear and corrosion resistant surface layers. In this work, samples of AISI 1060 steel were pack chromised for 6 and 9 h at 1000 and 1050 degrees C using different activator concentrations. Wear tests were performed in dry conditions and corrosion tests in natural sea water for the pack chromised samples and hard chromium. Pack chromising yielded the formation of layers with high chromium concentrations, high hardness and wear resistance. Increasing activator concentration causes no significant change on the morphology and thickness of the layers. The layers produced at 1050 degrees C yielded only a (Cr,Fe)(2)N1-x phase, and those obtained at 1000 degrees C are composed of a carbide mixture with (Cr,Fe)(2)N1-x. The sample treated at 1050 degrees C for 9 h resulted in an optimum condition by means of better wear resistance and corrosion properties, which were close to that exhibited by the hard chrome, indicating that pack chromising is a promising alternative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide-dispersion-strengthened (ODS) ferritic-martensitic steels are candidates for applications in fusion power plants where micro structural long-term stability at temperatures of 650 degrees C to 700 degrees C are required. The microstructural stability of 80% cold-rolled reduced-activation ferritic-martensitic 9% Cr ODS-Eurofer steel was investigated within a wide range of temperatures (300 degrees C to 1350 degrees C). Fine oxide dispersion is very effective to prevent recrystallization in the ferritic phase field. The low recrystallized volume fraction (<0.1) found in samples annealed at 800 degrees C is associated with the nuclei found at prior grain boundaries and around coarse M23C6 particles. The combination of retarding effects such as Zener drag and concurrent recovery decrease the local stored energy and impede further growth of the recrystallization nuclei. Above 90 degrees C, martensitic transformation takes place with consequent coarsening. Significant changes in crystallographic texture are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interpretation of the effect of plastic deformation on the calculated excess loss component (anomalous-loss) supports the concept of loss separation. Magnetic losses and Barkhausen noise of nonoriented electrical steel sheets were measured on Epstein strips taken from a single coil of 0.8% Si nonoriented electrical steel. Sheets were extracted in the annealed condition, without any skin pass and with a grain size of 18 mu m. This material was cold rolled in order to obtain sets of samples with true strain from 2% up to 29%. X-ray diffraction was used to estimate the dislocation density. The analysis of magnetic properties was performed by Barkhausen noise measurements and also by analyzing the hysteresis loops obtained from Epstein frame measurements for different inductions and different frequencies (including the quasi-static regime for hysteresis loss measurements). These data allowed us to observe that most of the well known total loss increase with plastic deformation is due to an increase in the hysteresis loss component, while excess loss decreases to become negligible. This behavior can be explained if it is assumed that the plastic deformation lead to an increase in the number of domain walls per unit volume, thereby decreasing the excess loss. Barkhausen peak area increases with plastic deformation, reproducing results taken from samples of different silicon content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of austenitic stainless steels-Nb stabilized, without Mo additions, non-susceptible to delta ferrite formation and devoid of intemetallic phases (sigma and chi), without deformation induced martensite is being developed, aiming at high temperature applications as well as for corrosive environments. The base steel composition is a 15Cr-15Ni with normal additions of Nb of 0.5, 1.0 and 2 wt%. Mechanical properties, oxidation and corrosion resistance already have been invetigated in previous papers. In this paper, the effects of Nb on the SFE, strain hardening and recrystallization resistance are evaluated with the help of Adaptive Neural Networks (ANN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of different Cr and C contents upon the solidification interval of ASTM A352M-06 Grade CA6NM cast martensitic stainless steel has been investigated using computational thermodynamics, and checked against DTA measurements in samples taken from 13 large cast parts, in order to identify potential sources for improvement on the part castability. Calculation results suggest, indeed, that this would be the case for C: when its content increases from 0.018 to 0.044 wt.% C (within the allowed range in the alloy specification), the solidification intervals increases from 25 to 43 K, which suggests improved castability with decreasing C contents. DTA results, however, do not support this prediction, showing a fairly constant solidification interval around 23 K for all investigated samples. The results are discussed both regarding the impact in alloy processing and the fitness of the existing databases to reproduce experimental results in these limiting cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood is a material of great applicability in construction, with advantageous properties to form various structural systems, such as walls and roof. Most of the roof structural systems follow models that have remained unchanged for a long time. A roof modular system in distinguished materials is proposed: reforested wood (Pine), oriented strand board (OSB) and roof tiles made of recycled long-life packaging material in order to be applied in rural construction. In this alternative, besides the benefit of giving destination packages with long-life thermal comfort, it also highlights the use of reforestated wood being the cultivation of such species that provides incentive for agribusiness. The structural performance of this alternative was evaluated through computer modeling and test results of two modular panels. The analysis is based on the results of vertical displacements, deformations and stresses. A positive correlation between theoretical and experimental values was observed, indicating the model's feasibility for use in roof structures. Therefore, the modular system represents a solution to new architecture conceptions to rural construction, for example, storage construction, cattle handling and poultry, with benefits provided by prefabricated building systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP). Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test"), the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is part of an extensive work about the technological development, experimental analysis and numerical modeling of steel fibre reinforced concrete pipes. The first part ("Steel fibre reinforced concrete pipes. Part 1: technological analysis of the mechanical behavior") dealt with the technological development of the experimental campaign, the test procedure and the discussion of the structural behavior obtained for each of the dosages of fibre used. This second part deals with the aspects of numerical modeling. In this respect, a numerical model called MAP, which simulates the behavior of fibre reinforced concrete pipes with medium-low range diameters, is introduced. The bases of the numerical model are also mentioned. Subsequently, the experimental results are contrasted with those produced by the numerical model, obtaining excellent correlations. It was possible to conclude that the numerical model is a useful tool for the design of this type of pipes, which represents an important step forward to establish the structural fibres as reinforcement for concrete pipes. Finally, the design for the optimal amount of fibres for a pipe with a diameter of 400 mm is presented as an illustrating example with strategic interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing demand for knowledge about the effect of high temperatures on structures has stimulated increasing research worldwide. This article presents experimental results for short composite steel and concrete columns subjected to high temperatures in ovens with or without an axial compression load, numerically analyzes the temperature distribution in these columns after 30 and 60 minutes and compares them with experimental results. The models consist of concrete-filled tubes of three different thicknesses and two different diameters, and the concrete fill has conventional properties that remained constant for all of the models. The stress-strain behavior of the composite columns was altered after exposure to high temperatures relative to the same columns at room temperature, which was most evident in the 60-minute tests due to the higher temperatures reached. The computational analysis adopted temperature rise curves that were obtained experimentally.