Effect of Plastic Deformation on the Excess Loss of Electrical Steel


Autoria(s): Rodrigues-, D. L., Jr.; Silveira, J. R. F.; Gerhardt, G. J. L.; Missell, Frank Patrick; Landgraf, F. J. G.; Machado, R.; de Campos, M. F.
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

05/11/2013

05/11/2013

2012

Resumo

The interpretation of the effect of plastic deformation on the calculated excess loss component (anomalous-loss) supports the concept of loss separation. Magnetic losses and Barkhausen noise of nonoriented electrical steel sheets were measured on Epstein strips taken from a single coil of 0.8% Si nonoriented electrical steel. Sheets were extracted in the annealed condition, without any skin pass and with a grain size of 18 mu m. This material was cold rolled in order to obtain sets of samples with true strain from 2% up to 29%. X-ray diffraction was used to estimate the dislocation density. The analysis of magnetic properties was performed by Barkhausen noise measurements and also by analyzing the hysteresis loops obtained from Epstein frame measurements for different inductions and different frequencies (including the quasi-static regime for hysteresis loss measurements). These data allowed us to observe that most of the well known total loss increase with plastic deformation is due to an increase in the hysteresis loss component, while excess loss decreases to become negligible. This behavior can be explained if it is assumed that the plastic deformation lead to an increase in the number of domain walls per unit volume, thereby decreasing the excess loss. Barkhausen peak area increases with plastic deformation, reproducing results taken from samples of different silicon content.

Identificador

IEEE TRANSACTIONS ON MAGNETICS, PISCATAWAY, v. 48, n. 4, supl. 4, Part 1, pp. 1425-1428, APR, 2012

0018-9464

http://www.producao.usp.br/handle/BDPI/41444

10.1109/TMAG.2011.2174214

http://dx.doi.org/10.1109/TMAG.2011.2174214

Idioma(s)

eng

Publicador

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

PISCATAWAY

Relação

IEEE TRANSACTIONS ON MAGNETICS

Direitos

restrictedAccess

Copyright IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Palavras-Chave #BARKHAUSEN NOISE #DISLOCATION DENSITY #EXCESS LOSS #MAGNETIC PROPERTIES #PLASTIC DEFORMATION #BARKHAUSEN NOISE #MAGNETIC-PROPERTIES #FLUX-DENSITY #IRON #STRESS #ENGINEERING, ELECTRICAL & ELECTRONIC #PHYSICS, APPLIED
Tipo

article

Proceedings Paper

publishedVersion