30 resultados para Sheaf of differential operators
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We extend and provide a vector-valued version of some results of C. Samuel about the geometric relations between the spaces of nuclear operators N(E, F) and spaces of compact operators K(E, F), where E and F are Banach spaces C(K) of all continuous functions defined on the countable compact metric spaces K equipped with the supremum norm. First we continue Samuel's work by proving that N(C(K-1), C(K-2)) contains no subspace isomorphic to K(C(K-3), C(K-4)) whenever K-1, K-2, K-3 and K-4 are arbitrary infinite countable compact metric spaces. Then we show that it is relatively consistent with ZFC that the above result and the main results of Samuel can be extended to C(K-1, X), C(K-2,Y), C(K-3, X) and C(K-4, Y) spaces, where K-1, K-2, K-3 and K-4 are arbitrary infinite totally ordered compact spaces; X comprises certain Banach spaces such that X* are isomorphic to subspaces of l(1); and Y comprises arbitrary subspaces of l(p), with 1 < p < infinity. Our results cover the cases of some non-classical Banach spaces X constructed by Alspach, by Alspach and Benyamini, by Benyamini and Lindenstrauss, by Bourgain and Delbaen and also by Argyros and Haydon.
Resumo:
Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.
Sharp estimates for eigenvalues of integral operators generated by dot product kernels on the sphere
Resumo:
We obtain explicit formulas for the eigenvalues of integral operators generated by continuous dot product kernels defined on the sphere via the usual gamma function. Using them, we present both, a procedure to describe sharp bounds for the eigenvalues and their asymptotic behavior near 0. We illustrate our results with examples, among them the integral operator generated by a Gaussian kernel. Finally, we sketch complex versions of our results to cover the cases when the sphere sits in a Hermitian space.
Resumo:
In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
Gelfand and Ponomarev [I.M. Gelfand, V.A. Ponomarev, Remarks on the classification of a pair of commuting linear transformations in a finite dimensional vector space, Funct. Anal. Appl. 3 (1969) 325-326] proved that the problem of classifying pairs of commuting linear operators contains the problem of classifying k-tuples of linear operators for any k. We prove an analogous statement for semilinear operators. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.
Resumo:
In this work we study C (a)-hypoellipticity in spaces of ultradistributions for analytic linear partial differential operators. Our main tool is a new a-priori inequality, which is stated in terms of the behaviour of holomorphic functions on appropriate wedges. In particular, for sum of squares operators satisfying Hormander's condition, we thus obtain a new method for studying analytic hypoellipticity for such a class. We also show how this method can be explicitly applied by studying a model operator, which is constructed as a perturbation of the so-called Baouendi-Goulaouic operator.
Resumo:
We examined achromatic contrast discrimination in asymptomatic carriers of 11778 Leber`s hereditary optic neuropathy (LHON 18 controls) and 18 age-match were also tested. To evaluate magnocellular (MC) and Parvocellular (PC) contrast discrimination, we used a version of Pokorny and Smith`s (1997) Pulsed/steady-pedestal paradigms (PPP/SPP) thought to be detected via PC and MC pathways, respectively. A luminance pedestal (four 1 degrees x 1 degrees squares) was presented on a 12 cd/m(2) surround. The luminance of one of the squares (trial square, TS) was randomly incremented for either 17 or 133 ms. Observers had to detect the TS, in a forced-choice task, at each duration, for three pedestal levels: 7, 12, 19 cd/m(2). In the SPP, the pedestal was fixed, and the TS was modulated. For the PPP, all four pedestal squares pulsed for 17 or 133 ms, and the TS was simultaneously incremented or decremented. We found that contrast discrimination thresholds of LHON carriers were significantly higher than controls` in the condition with the highest luminance of both paradigms, implying impaired contrast processing with no evidence of differential sensitivity losses between the two systems. Carriers` thresholds manifested significantly longer temporal integration than controls in the SPP, consistent with slowed MC responses. The SPP and PPP paradigms can identify contrast and temporal processing deficits in asymptomatic LHON carriers, and thus provide an additional tool for early detection and characterization of the disease.
Resumo:
This article reports on the influence of the magnetization damping on dynamic hysteresis loops in single-domain particles with uniaxial anisotropy. The approach is based on the Neel-Brown theory and the hierarchy of differential recurrence relations, which follow from averaging over the realizations of the stochastic Landau-Lifshitz equation. A new method of solution is proposed, where the resulting system of differential equations is solved directly using optimized algorithms to explore its sparsity. All parameters involved in uniaxial systems are treated in detail, with particular attention given to the frequency dependence. It is shown that in the ferromagnetic resonance region, novel phenomena are observed for even moderately low values of the damping. The hysteresis loops assume remarkably unusual shapes, which are also followed by a pronounced reduction of their heights. Also demonstrated is that these features remain for randomly oriented ensembles and, moreover, are approximately independent of temperature and particle size. (C) 2012 American Institute of Physics. [doi:10.1063/1.3684629]
Resumo:
In this work, we are interested in the dynamic behavior of a parabolic problem with nonlinear boundary conditions and delay in the boundary. We construct a reaction-diffusion problem with delay in the interior, where the reaction term is concentrated in a neighborhood of the boundary and this neighborhood shrinks to boundary, as a parameter epsilon goes to zero. We analyze the limit of the solutions of this concentrated problem and prove that these solutions converge in certain continuous function spaces to the unique solution of the parabolic problem with delay in the boundary. This convergence result allows us to approximate the solution of equations with delay acting on the boundary by solutions of equations with delay acting in the interior and it may contribute to analyze the dynamic behavior of delay equations when the delay is at the boundary. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.
Resumo:
We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.
Resumo:
We construct all self-adjoint Schrodinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.
Resumo:
Polymer electrolytes (PEs) are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Deoxyribonucleic acid (DNA) as an important biological macromolecule has electric conducting electrochemical properties and unique three dimensional structures. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying simultaneously high ionic conductivity we have produced in the present work, flexible films based on DNA, incorporating ionic liquids (ILs). Over the last decade ILs have been employed as a new media in electrochemistry and electroanalysis. The materials studied here have been characterized by means of Differential Scanning Calorimetry, Complex Impedance Spectroscopy and Cyclic Voltammetry. (C) 2012 Elsevier B.V. All rights reserved.