13 resultados para RIEMANNIAN MANIFOLDS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this article, we study the Reidemeister torsion and the analytic torsion of the m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145-210, 1971). We prove that the Reidemeister torsion coincides with a power of the volume of the disc. We study the additional terms arising in the analytic torsion due to the boundary, using generalizations of the Cheeger-Muller theorem. We use a formula proved by Bruning and Ma (GAFA 16:767-873, 2006) that predicts a new anomaly boundary term beside the known term proportional to the Euler characteristic of the boundary (Luck, J Diff Geom 37:263-322, 1993). Some of our results extend to the case of the cone over a sphere, in particular we evaluate directly the analytic torsion for a cone over the circle and over the two sphere. We compare the results obtained in the low dimensional cases. We also consider a different formula for the boundary term given by Dai and Fang (Asian J Math 4:695-714, 2000), and we compare the results. The results of these work were announced in the study of Hartmann et al. (BUMI 2:529-533, 2009).
Resumo:
We prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products.
Resumo:
We study local rigidity and multiplicity of constant scalar curvature metrics in arbitrary products of compact manifolds. Using (equivariant) bifurcation theory we determine the existence of infinitely many metrics that are accumulation points of pairwise non-homothetic solutions of the Yamabe problem. Using local rigidity and some compactness results for solutions of the Yamabe problem, we also exhibit new examples of conformal classes (with positive Yamabe constant) for which uniqueness holds. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We show that if N, an open connected n-manifold with finitely generated fundamental group, is C-2 foliated by closed planes, then pi(1)(N) is a free group. This implies that if pi(1)(N) has an abelian subgroup of rank greater than one, then F has at least a nonclosed leaf. Next, we show that if N is three dimensional with fundamental group abelian of rank greater than one, then N is homeomorphic to T-2 x R. Furthermore, in this case we give a complete description of the foliation.
Resumo:
We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A singular Riemannian foliation F on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Sigma, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of H : M -> Sigma, coincide with the level sets of a smooth map H: M -> Sigma, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
Resumo:
In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.
Resumo:
In general the term "Lagrangian coherent structure" (LCS) is used to make reference about structures whose properties are similar to a time-dependent analog of stable and unstable manifolds from a hyperbolic fixed point in Hamiltonian systems. Recently, the term LCS was used to describe a different type of structure, whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. A new kind of LCS was obtained. It consists of barriers, called robust tori that block the trajectories in certain regions of the phase space. We used the Double-Gyre Flow system as the model. In this system, the robust tori play the role of a skeleton for the dynamics and block, horizontally, vortices that come from different parts of the phase space. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1 + 1) dimensions, Chern-Simons theories in (2 + 1) dimensions, and non-abelian gauge theories in (2 + 1) and (3 + 1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3 + 1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A dynamical characterization of the stability boundary for a fairly large class of nonlinear autonomous dynamical systems is developed in this paper. This characterization generalizes the existing results by allowing the existence of saddle-node equilibrium points on the stability boundary. The stability boundary of an asymptotically stable equilibrium point is shown to consist of the stable manifolds of the hyperbolic equilibrium points on the stability boundary and the stable, stable center and center manifolds of the saddle-node equilibrium points on the stability boundary.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.