8 resultados para Quadratic Phase Coupling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the N-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group scheme. DOI: 10.1103/PhysRevB.86.214204
Resumo:
It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.
Resumo:
In this paper, we study the signal amplification of coupled active rotators with phase-shifted coupling. We find that the system's response to the external subthreshold signal can be significantly affected by each of the two types of phase-shifted couplings: identical and non-identical phase-shifted couplings. Moreover, through both theoretical analysis and numerical simulations, we have figured out the optimal phase shift, at which the largest signal amplification is generated. These results show that the phase-shifted coupling plays an important role in regulating the system's response to the subthreshold signal.
Resumo:
This paper deals with the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees, and a time delay is included in the system. This assumption allows enhancing the explosive transition to reach a synchronous state. We provide an analytical treatment developed in a star graph, which reproduces results obtained in scale-free networks. Our findings have important implications in understanding the synchronization of complex networks since the time delay is present in most real-world complex systems due to the finite speed of the signal transmission over a distance.
Enhancement of Nematic Order and Global Phase Diagram of a Lattice Model for Coupled Nematic Systems
Resumo:
We use an infinite-range Maier-Saupe model, with two sets of local quadrupolar variables and restricted orientations, to investigate the global phase diagram of a coupled system of two nematic subsystems. The free energy and the equations of state are exactly calculated by standard techniques of statistical mechanics. The nematic-isotropic transition temperature of system A increases with both the interaction energy among mesogens of system B, and the two-subsystem coupling J. This enhancement of the nematic phase is manifested in a global phase diagram in terms of the interaction parameters and the temperature T. We make some comments on the connections of these results with experimental findings for a system of diluted ferroelectric nanoparticles embedded in a nematic liquid-crystalline environment.
Resumo:
A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.
Resumo:
In this work, a LED (light emitting diode) based photometer for solid phase photometry is described. The photometer was designed to permit direct coupling of a light source (LED) and a photodiode to a flow cell with an optical pathlength of 4 mm. The flow cell was filled with adsorbing solid phase material (C-18), which was used to immobilize the chromogenic reagent 1-(2-thiazolylazo)-2-naphthol (TAN). Aiming to allow accuracy assessment, samples were also analyzed employing ICP OES (inductively coupled plasma optical emission spectrometry) methodology. Applying the paired t-test at the 95% confidence level, no significant difference was observed. Other useful features were also achieved: linear response ranging from 0.05 to 0.85 mg L-1 Zn, limit of detection of 9 mu g L-1 Zn (3 sigma criterion), standard deviation of 1.4% (n = 10), sampling throughput of 36 determinations per h, and a waste generation and reagent consumption of 1.7 mL and of 0.03 mu g per determination, respectively.