35 resultados para Polymeric lightweight concrete

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study rice husk ash (RHA) and broiler bed ash from rice husk (BBA), two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL) and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method) and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB), lightweight aggregate (expanded vermiculite-term) and short fibers (polypropylene, glass and PVA), in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 +/- 5% km . h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows the results of an experimental investigation carried out on a connection element of glulam and concrete composite structures, through double-sided push-out shear tests. The connection system was composed of perforated steel plates glued with epoxy adhesive. Five specimens were made and tested under shear forces. This innovative connection system showed an average initial slip modulus equivalent to 339.4 kN/mm. In addition, the connection system was evaluated by means of numerical simulations and the software ANSYS was used for this purpose. The numerical simulations demonstrated good agreement with the experimental data, especially in the regime of elastic-linear behavior of materials. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A derivative spectrophotometric method was validated for quzintification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity. precision, accuracy, recovery. detection (LOD) and quantification (LOQ) Inuits were established for method validation. First-derivative it 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging front 1.25 to 40.0 mu g/mL. (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD) was 0.08 mu g/mL and LOQ. 0.25 mu g/mL. Thus. the proposed method proved to be easy. low cost. and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional treatment of tuberculosis (TB) demands a long course therapy (6 months), known to originate multiple drug resistant strains (MDR-TB), which emphasizes the urgent need for new antituberculous drugs. The purpose of this study was to investigate a novel treatment for TB meant to improve patient compliance by reducing drug dosage frequency. Polymeric microparticles containing the synthetic analogue of neolignan, 1-phenyl-2-phenoxiethanone (LS-2), were obtained by a method of emulsification and solvent evaporation and chemically characterized. Only representative LS-2-loaded microparticles were considered for further studies involving experimental murine TB induced by Mycobacterium tuberculosis H37Rv ATCC 27294. The LS-2-loaded microparticles were spherical in shape, had a smooth wall and showed an encapsulation efficiency of 93% in addition to displaying sustained release. Chemotherapeutic potential of LS-2 entrapped in microparticles was comparable to control groups. These findings are encouraging and indicate that LS-2-loaded microparticles are a potential alternative to conventional chemotherapy of TB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masonry spandrels together with shear walls are structural components of a masonry building subjected to lateral loads. Shear walls are the main components of this structural system, even if masonry spandrels are the elements that ensure the connection of shear wall panels and the distribution of stresses through the masonry piers. The use of prefabricated truss type bars in the transversal and longitudinal directions is usually considered a challenge, even if the simplicity of the applications suggested here alleviate some of the possible difficulties. This paper focus on the experimental behavior of masonry spandrels reinforced with prefabricated trusses, considering different possibilities for the arrangement of reinforcement and blocks. Reinforced spandrels with three and two hollow cell concrete blocks and with different reinforcement ratios have been built and tested using a four and three point loading test configuration. Horizontal bed joint reinforcement increased the capacity of deformation as well as the ultimate load, leading to ductile responses. Vertical reinforcement increased the shear strength of the masonry spandrels and its distribution play a central role on the shear behavior. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research deals with the behaviour of grouted dowels used in beam-to-column connections in precast concrete structures. The research focuses primarily on the theoretical and experimental analysis of the resistance mechanism of the dowels. The experimental programme included 15 models for analysing the following variations in dowel parameters: a) dowel diameters of 16, 20 and 25 mm, b) dowel inclinations of 0 degrees (i.e. perpendicular to the interface), 45 degrees and 60 degrees, c) compressive strength of classes C35 and C50 for the concrete adjacent to the dowels, and d) the absence or presence of compressive loads normal to the interface. The experimental results indicate that the ultimate capacity and shear stiffness of the inclined dowels are significantly higher than those of the perpendicular dowels. Based on these results, an analytical model is proposed that considers the influence of the parameters studied regarding the capacity of the dowel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride) (PVC) foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software Abaqus (TM) were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aimed to develop plurimetallic electrocatalysts composed of Pt, Ru, Ni, and Sn supported on C by decomposition of polymeric precursors (DPP), at a constant metal: carbon ratio of 40:60 wt.%, for application in direct ethanol fuel cell (DEFC). The obtained nanoparticles were physico-chemically characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). XRD results revealed a face-centered cubic crystalline Pt with evidence that Ni, Ru, and Sn atoms were incorporated into the Pt structure. Electrochemical characterization of the nanoparticles was accomplished by cyclic voltammetry (CV) and chronoamperometry (CA) in slightly acidic medium (0.05 mol L-1 H2SO4), in the absence and presence of ethanol. Addition of Sn to PtRuNi/C catalysts significantly shifted the ethanol and CO onset potentials toward lower values, thus increasing the catalytic activity, especially for the quaternary composition Pt64Sn15Ru13Ni8/C. Electrolysis of ethanol solutions at 0.4 V vs. RHE allowed determination of acetaldehyde and acetic acid as the main reaction products. The presence of Ru in alloys promoted formation of acetic acid as the main product of ethanol oxidation. The Pt64Sn15Ru13Ni8/C catalyst displayed the best performance for DEFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preformed structural reinforcements have shown good performance in crash tests, where the great advantage is their weight. These reinforcements are designed with the aim of increasing the rigidity of regions with large deformations, thus stabilising sections of the vehicle that work as load path during impact. The objective of this work is to show the application of structural reinforcements made of polymeric material PA66 in the field of vehicle safety, through finite element simulations. Simulations of frontal impact at 50 km/h and in ODB (offset deformable barrier) at 57 km/h configurations (standards such as ECE R-94 and ECE R-12) were performed in the software LS-DYNA R (R) and MADYMO (R). The simulations showed that the use of polymeric reinforcements leads to a 70% reduction in A-pillar intrusion, a 65% reduction in the displacement of the steering column and a 59% reduction in the deformation in the region of the occupant legs and feet. The level of occupant injuries was analysed by MADYMO (R) software, and a reduction of 23.5% in the chest compression and 80% in the tibia compression were verified. According to the standard, such conditions lead to an improvement in the occupant safety in a vehicle collision event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.