9 resultados para Phospholipase C

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (Ang II), acting via the AT1 receptor, induces an increase in intracellular calcium [Ca(2+)]i that then interacts with calmodulin (CaM). The Ca(2+)/CaM complex directly or indirectly activates sodium hydrogen exchanger 1 (NHE1) and phosphorylates calmodulin kinase II (CaMKII), which then regulates sodium hydrogen exchanger 3 (NHE3) activity. In this study, we investigated the cellular signaling pathways responsible for Ang II-mediated regulation of NHE1 and NHE3 in Madin-Darby canine kidney (MDCK) cells. The NHE1- and NHE3-dependent pHi recovery rates were evaluated by fluorescence microscopy using the fluorescent probe BCECF/AM, messenger RNA was evaluated with the reverse transcription polymerase chain reaction (RT-PCR), and protein expression was evaluated by immunoblot. We demonstrated that treatment with Ang II (1pM or 1 nM) for 30 min induced, via the AT1 but not the AT2 receptor, an equal increase in NHE1 and NHE3 activity that was reduced by the specific inhibitors HOE 694 and S3226, respectively. Ang II (1 nM) did not change the total expression of NHE1, NHE3 or calmodulin, but it induced CaMKII, cRaf-1, Erk1/2 and p90(RSK) phosphorylation. The stimulatory effects of Ang II (1 nM) on NHE1 or NHE3 activity or protein abundance was reduced by ophiobolin-A (CaM inhibitor), KN93 (CaMKII inhibitor) or PD98059 (Mek inhibitor). These results indicate that after 30 min, Ang II treatment may activate G protein-dependent pathways, including the AT1/PLC/Ca(2+)/CaM pathway, which induces CaMKII phosphorylation to stimulate NHE3 and induces cRaf-1/Mek/Erk1/2/p90(RSK) activity to stimulate NHE1

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signalling in malaria parasites is a field of growing interest as its components may prove to be valuable drug targets, especially when one considers the burden of a disease that is responsible for up to 500 million infections annually. The scope of this review is to discuss external stimuli in the parasite life cycle and the upstream machinery responsible for translating them into intracellular responses, focussing particularly on the calcium signalling pathway. (C) 2012 Published by Elsevier Masson SAS on behalf of Institut Pasteur.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ehrlichia canis, etiologic agent of Canine Monocytic Ehrlichiosis, is an obligatory intracellular bacterium that parasitizes monocytes and macrophages. In this study we analyzed the role of the cytoskeleton specifically actin microfilaments and microtubules, components of inositol phospholipid signaling pathway such as phospholipase C (PLC), protein kinase (PTK) and calcium channels as well as the role of iron in the E. canis proliferation in DH82 cells. Different inhibitory compounds were used for each component: Cytochalasin D (inhibits actin polymerization), Nocodazole (inhibits microtubule polymerization), Neomycin (PLC inhibitor), Genistein (PTK inhibitor), Verapamil (calcium channel blocker) and Deferoxamine (iron chelator). We observed a significant decrease in the total number of bacteria in infected cells treated suggesting that these cellular components analized are essentials to E. canis proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Human Secreted Group IIA Phospholipase A(2) (hsPIA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K h5PLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 mu g/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca2+-independent damaging activity against Liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein (C) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hybrid created from the crossbreeding of European and African bees, known as the Africanised bee, has provided numerous advantages for current beekeeping. However, this new species exhibits undesirable behaviours, such as colony defence instinct and a propensity to attack en masse, which can result in serious accidents. To date, there is no effective treatment for cases of Africanised bee envenomation. One promising technique for developing an efficient antivenom is the use of phage display technology, which enables the production of human antibodies, thus avoiding the complications of serum therapy, such as anaphylaxis and serum sickness. The aim of this study was to produce human monoclonal single-chain Fv (scFv) antibody fragments capable of inhibiting the toxic effects of Africanised bee venom. We conducted four rounds of selection of antibodies against the venom and three rounds of selection of antibodies against purified melittin. Three clones were selected and tested by enzyme-linked immunosorbent assay to verify their specificity for melittin and phospholipase A2. Two clones (C5 and C12) were specific for melittin, and one (A7) was specific for phospholipase A2. In a kinetic haemolytic assay, these clones were evaluated individually and in pairs. The A7-C12 combination had the best synergistic effect and was chosen to be used in the assays of myotoxicity inhibition and lethality. The A7-C12 combination inhibited the in vivo myotoxic effect of the venom and increased the survival of treated animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells. (J Histochem Cytochem 60:386-396, 2012)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Suramin is a polysulphonated naphthylurea with inhibitory activity against the human secreted group IIA phospholipase A(2) (hsPLA2GIIA), and we have investigated suramin binding to recombinant hsPLA2GIIA using site-directed mutagenesis and molecular dynamics (MD) simulations. The changes in suramin binding affinity of 13 cationic residue mutants of the hsPLA2GIIA was strongly correlated with alterations in the inhibition of membrane damaging activity of the protein. Suramin binding to hsPLA2GIIA was also studied by MD simulations, which demonstrated that altered intermolecular potential energy of the suramin/mutant complexes was a reliable indicator of affinity change. Although residues in the C-terminal region play a major role in the stabilization of the hsPLA2GIIA/suramin complex, attractive and repulsive hydrophobic and electrostatic interactions with residues throughout the protein together with the adoption of a bent suramin conformation, all contribute to the stability of the complex. Analysis of the h5PLA2GIIA/suramin interactions allows the prediction of the properties of suramin analogues with improved binding and higher affinities which may be candidates for novel phospholipase A(2) inhibitors. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Human Secreted Group IID Phospholipase A(2) (hsPLA2GIID) may be involved in the human acute immune response. Here we have demonstrated that the hsPLA2GIID presents bactericidal and Ca2+-independent liposome membrane-damaging activities and we have compared these effects with the catalytic activity of active-site mutants of the protein. All mutants showed reduced hydrolytic activity against DOPC:DOPG liposome membranes, however bactericidal effects against Escherichia coli and Micrococcus luteus were less affected, with the D49K mutant retaining 30% killing of the Gram-negative bacteria at a concentration of 10 mu g/mL despite the absence of catalytic activity. The H48Q mutant maintained Ca2+-independent membrane-damaging activity whereas the G30S and D49K mutants were approximately 50% of the wild-type protein, demonstrating that phospholipid bilayer permeabilization by the hsPLA2GIID is independent of catalytic activity. We suggest that this Ca2+-independent damaging activity may play a role in the bactericidal function of the protein. (C) 2012 Elsevier Masson SAS. All rights reserved.