9 resultados para Neurotoxicity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaineAEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaineAEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after cocaine use alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual system is particularly sensitive to methylmercury (MeHg) exposure and, therefore, provides a useful model for investigating the fundamental mechanisms that direct toxic effects. During a period of 70 days, adult of a freshwater fish species Hoplias malabaricus were fed with fish prey previously labeled with two different doses of methylmercury (0.075 and 0.75 mu g g(-1)) to determine the mercury distribution and morphological changes in the retina. Mercury deposits were found in the photoreceptor layer, in the inner plexiform layer and in the outer plexiform layer, demonstrating a dose-dependent bioaccumulation. The ultrastructure analysis of retina revealed a cellular deterioration in the photoreceptor layer, morphological changes in the inner and outer segments of rods, structural changes in the plasma membrane of rods and double cones, changes in the process of removal of membranous discs and a structural discontinuity. These results lead to the conclusion that methylmercury is able to cross the blood-retina barrier, accumulate in the cells and layers of retina and induce changes in photoreceptors of H. malabaricus even under subchronic exposure. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cocaine is a widely used drug and its abuse is associated with physical, psychiatric and social problems. Abnormalities in newborns have been demonstrated to be due to the toxic effects of cocaine during fetal development. The mechanism by which cocaine causes neurological damage is complex and involves interactions of the drug with several neurotransmitter systems, such as the increase of extracellular levels of dopamine and free radicals, and modulation of transcription factors. The aim of this review was to evaluate the importance of the dopaminergic system and the participation of inflammatory signaling in cocaine neurotoxicity. Our study showed that cocaine activates the transcription factors NF-κB and CREB, which regulate genes involved in cellular death. GBR 12909 (an inhibitor of dopamine reuptake), lidocaine (a local anesthetic), and dopamine did not activate NF-κB in the same way as cocaine. However, the attenuation of NF-κB activity after the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, suggests that the activation of NF-κB by cocaine is, at least partially, due to activation of D1 receptors. NF-κB seems to have a protective role in these cells because its inhibition increased cellular death caused by cocaine. The increase in BDNF (brain-derived neurotrophic factor) mRNA can also be related to the protective role of both CREB and NF-κB transcription factors. An understanding of the mechanisms by which cocaine induces cell death in the brain will contribute to the development of new therapies for drug abusers, which can help to slow down the progress of degenerative processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Color vision was examined in subjects with long-term occupational exposure to mercury (Hg) vapor. The color vision impairment was assessed by employing a quantitative measure of distortion of individual and group perceptual color spaces. Hg subjects (n = 18; 42.1 +/- 6.5 years old; exposure time = 10.4 +/- 5.0 years; time away from the exposure source = 6.8 +/- 4.6 years) and controls (n = 18; 46.1 +/- 8.4 years old) were examined using two arrangement tests, D-15 and D-15d, in the traditional way, and also in a triadic procedure. From each subject`s `odd-one-out` choices, matrices of inter-cap subjective dissimilarities were derived and processed by non-metric multidimensional scaling (MDS). D-15d results differed significantly between the Hg-group and the control group (p < 0.05), with the impairment predominantly along the tritan axis. 2D perceptual color spaces, individual and group, were reconstructed, with the dimensions interpreted as the red-green (RG) and the blue-yellow (BY) systems. When color configurations from the Hg-group were compared to those of the controls, they presented more fluctuations along both chromatic dimensions, indicating a statistically significant difference along the BY axis. In conclusion, the present findings confirm that color vision impairments persist in subjects that have received long-term occupational exposure to Hg-vapor although, at the time of testing, they were presenting mean urinary concentration within the normal range for non-exposed individuals. Considering the advantages of the triadic procedure in clinical evaluation of acquired color vision deficiencies, further studies should attempt to verify and/or improve its efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toluene is an organic solvent used in numerous processes and products, including industrial paints. Toluene neurotoxicity and reproductive toxicity are well recognized: however, its genotoxicity is still under discussion, and toluene is not classified as a carcinogenic solvent. Using the comet assay and the micronucleus test for detection of possible genotoxic effects of toluene, we monitored industrial painters from Rio Grande do Sul, Brazil. The putative involvement of oxidative stress in genetic damage and the influences of age, smoking, alcohol consumption, and exposure time were also assessed. Although all biomarkers of toluene exposure were below the biological exposure limits, painters presented significantly higher DNA damage (comet assay) than the control group; however, in the micronucleus assay, no significant difference was observed. Painters also showed alterations in hepatic enzymes and albumin levels, as well as oxidative damage, suggesting the involvement of oxidative stress. According to multiple linear regression analysis, blood toluene levels may account for the increased DNA damage in painters. In summary, this study showed that low levels of toluene exposure can cause genetic damage, and this is related to oxidative stress, age, and time of exposure. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabidiol (CBD), a non-psychoactive constituent of cannabis, has been reported to induce neuroprotective effects in several experimental models of brain injury. We aimed at investigating whether this drug could also improve locomotor recovery of rats submitted to spinal cord cryoinjury. Rats were distributed into five experimental groups. Animals were submitted to laminectomy in vertebral segment T10 followed or not by application of liquid nitrogen for 5 s into the spinal cord at the same level to cause cryoinjury. The animals received injections of vehicle or CBD (20 mg/kg) immediately before, 3 h after and daily for 6 days after surgery. The Basso, Beattie, and Bresnahan motor evaluation test was used to assess motor function post-lesion one day before surgery and on the first, third, and seventh postoperative days. The extent of injury was evaluated by hematoxylin-eosin histology and FosB expression. Cryogenic lesion of the spinal cord resulted in a significant motor deficit. Cannabidiol-treated rats exhibited a higher Basso, Beattie, and Bresnahan locomotor score at the end of the first week after spinal cord injury: lesion + vehicle, day 1: zero, day 7: four, and lesion + Cannabidiol 20 mg/kg, day 1: zero, day 7: seven. Moreover, at this moment there was a significant reduction in the extent of tissue injury and FosB expression in the ventral horn of the spinal cord. The present study confirmed that application of liquid nitrogen to the spinal cord induces reproducible and quantifiable spinal cord injury associated with locomotor function impairments. Cannabidiol improved locomotor functional recovery and reduced injury extent, suggesting that it could be useful in the treatment of spinal cord lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methylmercury (MeHg) is an environmental pollutant that is highly toxic to the central nervous system. As its effects on male reproductive system are poorly understood, this study was carried out to analyse the effects of MeHg on the rat prostate. To evaluate the MeHg toxicity on ventral prostate, three groups of adult male Wistar rats received oral doses of 0.5, 1.0 and 3.0mg/kg MeHg, respectively, on a daily basis for 14days. A fourth group was used as a control. The prostate weight was decreased in rats treated orally with 0.5mg/kg MeHg compared to controls. Also, Hg concentration increased significantly in the prostate after treatments. There were reductions in serum testosterone levels and androgen receptor immunoreactivity in animals receiving 3.0mgMeHg/kg. The stereological data showed changes in the prostatic epithelial, stromal and luminal compartments which varied according to the different doses. Histopathological alterations, such as chronic inflammation, stratified epithelial hyperplasia and epithelial inflammatory reactive atypia, were observed in the 0.5mg/kg MeHg-treated group. Epithelial atrophy was observed in the 3.0mg/kg MeHg-treated group. In conclusion, the MeHg affects prostatic homoeostasis resulting in histopathological changes that may be relevant in the pathogenesis of prostatic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.