15 resultados para Nanotecnologia

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methaneseleninate and 1,10-phenanthroline were used as ligands in the synthesis of new lanthanide complexes. The photostability, emission quantum yield (q) and quantum efficiency (eta) of the D-5(0) emitting level of the Eu3+ ion were determined. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal intramolecular energy transfer process. The nephelauxetic effect was investigated to assess the covalency of the ligand-metal chemical bond. The values of the experimental 4f-4f intensity parameters, suggest that this ion is in a chemical environment less polarisable than in the case of complexes with beta-diketonates as ligands. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the influence of SiO2 content on the spectroscopic properties and laser emission efficiency of Yb3+-Er3+ co-doped calcium aluminosilicate glasses. An increase in SiO2 content resulted in higher phonon energy, which reduced the up-conversion emission, enhanced the energy transfer efficiency up to 70 % from Yb3+ to Er3+, and enhanced the optical quality. All these results led to an increase from 20 to 30 % in the laser emission efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This communication reports a promising platform for rapid, simple, direct, and ultrasensitive determination of serotonin. The method is related to integration of vertically aligned single-walled carbon nanotubes (SWCNTs) in electrochemical microfluidic devices. The required microfabrication protocol is simple and fast. In addition, the nanomaterial influenced remarkably the obtained limit-of-detection (LOD) values. Our system achieved a LOD of 0.2 nmol L-1 for serotonin, to the best of our knowledge one of the lowest values reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The down-conversion process in Tb3+-Yb3+ co-doped Calibo glasses was studied. The emission, excitation and time-resolved measurements indicated the existence of an energy conversion through the excitation of Tb3+ ions to near-infrared emission by Yb3+ ions. The emission intensity dependence on excitation power confirms that the one-photon process is responsible for the Yb3+ emission. An enhanced Yb3+ emission was observed with Yb3+ doping and an optimal energy transfer efficiency of 32% was obtained before reaching near-infrared emission quenching. The mechanism of the non-resonant energy transfer from Tb3+ to Yb3+ is discussed in terms of the Tb3+-Yb3+ cross-relaxation and multiphonon decay processes. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Nd3+-Yb3+ couple was investigated in fluoroindogallate glasses using optical spectroscopy to elucidate the energy transfer mechanisms involved in the downconversion (DC) process. Upon excitation of a Nd3+ ion by an ultraviolet photon, DC through a three-step energy transfer process occurs, in which the energy of the ultraviolet photon absorbed by the Nd3+ ion is converted into three infrared photons emitted by Yb3+ ions, i.e. quantum cutting (QC). In addition, with excitation in the visible, our results confirm that the DC process occurs through a one-step energy transfer process, in which the energy of a visible photon absorbed by the Nd3+ ion is converted into only one infrared photon emitted by an Yb3+ ion. Time-resolved measurements enabled the estimation of the efficiencies of the cross-relaxation processes between Nd3+ and Yb3+ ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and photoluminescent properties of Ln(III)-thenoyltrifluoroacetonate and dibenzoylmethanate complexes (Ln = Eu(III) and Gd(III) ions) containing tertiary amides such as dimethylacetamide (DMA), dimethylformamide (DMF), and dimethylbenzamide (DMB) as neutral ligands are reported. The Ln complexes were characterized by elemental analysis, complexometric titration with EDTA, and infrared spectroscopy. Single-crystal X-ray structure data of the [Eu(DBM)(3).(DMA)] compound indicates that this complex crystallizes in the triclinic system, space group PT with the following cell parameters: a = 10.2580(3) angstrom, b = 10.3843(2) angstrom, c= 22.3517(5) angstrom, alpha = 78.906(2)degrees, beta = 78.049(2)degrees, lambda= 63.239(2)degrees, V= 2066.41(9) angstrom(3), and Z = 2. The coordination polyhedron for the Eu(III) complex may be described as an approximate C-2v distorted monocapped trigonal prism. The optical properties of the Eu(III) complexes were studied based on the intensity parameters and luminescence quantum yield (q). The values of the ohm(2) parameter of the Eu-DBM complexes are larger than those for the Eu-TTA complexes, indicating that the Eu(III) ion is in a more polarizable chemical environment in the former case. The geometries of the complexes have been optimized by using the Sparkle Model, and the results have been used to perform theoretical predictions of the ligand-to-metal energy transfer via direct and exchange Coulomb mechanisms. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The persistent luminescence of CdSiO3:Tb3+ was investigated with photoluminescence, thermoluminescence (TL), synchrotron radiation X-ray absorption (XANES and EXAFS) and UV-VUV spectroscopies. Only the typical intraconfigurational 4f(8)-4f(8) transitions of the Tb3+ ion were observed with no traces of band emission in either the conventional UV excited or persistent luminescence spectra. The trap structure from TL with three traps from 0.65 to 0.85 eV is ideal for room-temperature persistent luminescence similar to, e.g., Sr2MgSi2O7:Eu2+,R3+. Despite the rather low band gap energy, 5.28 eV, the persistent luminescence from Tb3+ is produced only under UV irradiation due to the inauspicious position of the F-7(6) ground level deep in the band gap of CdSiO3. This confirms the role of electrons as the charge carriers in the mechanism of Tb3+ persistent luminescence. The XANES spectra indicated the presence of only the trivalent Tb3+ species, thus excluding the direct Tb3+ -> Tb-IV oxidation during the charging process of persistent luminescence. Eventually, a unique persistent luminescence mechanism for Tb3+ in CdSiO3 was constructed based on the comprehensive experimental data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an approach to ion implantation in which the plasma and its electronics are held at ground potential and the ion beam is injected into a space held at high negative potential, allowing considerable savings both economically and technologically. We used an “inverted ion implanter” of this kind to carry out implantation of gold into alumina, with Au ion energy 40 keV and dose (3–9) × 1016 cm−2. Resistivity was measured in situ as a function of dose and compared with predictions of a model based on percolation theory, in which electron transport in the composite is explained by conduction through a random resistor network formed by Au nanoparticles. Excellent agreement is found between the experimental results and the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent advances and promises in nanoscience and nanotechnology have been focused on hexagonal materials, mainly on carbon-based nanostructures. Recently, new candidates have been raised, where the greatest efforts are devoted to a new hexagonal and buckled material made of silicon, named Silicene. This new material presents an energy gap due to spin-orbit interaction of approximately 1.5 meV, where the measurement of quantum spin Hall effect(QSHE) can be made experimentally. Some investigations also show that the QSHE in 2D low-buckled hexagonal structures of germanium is present. Since the similarities, and at the same time the differences, between Si and Ge, over the years, have motivated a lot of investigations in these materials. In this work we performed systematic investigations on the electronic structure and band topology in both ordered and disordered SixGe1-x alloys monolayer with 2D honeycomb geometry by first-principles calculations. We show that an applied electric field can tune the gap size for both alloys. However, as a function of electric field, the disordered alloy presents a W-shaped behavior, similarly to the pure Si or Ge, whereas for the ordered alloy a V-shaped behavior is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-ceria solid-solutions are extensively used as promoters for three-way catalysts, which are applied in the control of NOx, CO and hydrocarbons emission from automotive exhausts. In addition, thesematerials can be used as anodes in solid oxide fuel cells (SOFCs) operated with hydrocarbons. There areonly few works on ZrO2-CeO2 ordered mesoporous materials for catalytic applications and for anodes inSOFCs. The interest in these anodes relies on the fact that ZrO2-CeO2materials are mixed ionic/electronic conductors in reducing atmosphere and, therefore, fuel oxidation is produced on its entire surface, while it only occurs in the [anode/electrolyte/gas] interface (triple-phase boundaries) for electronic conductors. In this work, a synthesis method was developed usingZr and Ce chloride precursors, HCl aqueous solution, Pluronic P123 as the structure directing agent, NH4OH to adjust the pH (3-4) and a Teflon autoclave to perform hydrothermal treatment (80ºC/48 hours). The samples were dried and calcined, until 540ºC in N2and 4 hours in air. The X-ray diffraction data showed that powders with higher CeO2 content are formed by a larger fraction of the cubic CeO2 phase, while for a lower CeO2content the major crystalline structure is the tetragonal ZrO2 phase. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)×6H2O. The resulting powder was calcinated in air until 350ºC for 2 hours. Temperature-programmed reduction (TPR) data were collected in order to evaluate the reduction profiles of ZrO2-x%CeO2:Ni samples in H2/Ar atmosphere. Results showed lower reduction temperatures for all ceria content in samples comparing to a NiO standard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size effects on phase stability and phase transitions in technologically relevant materials have received growing attention. Several works reported that metastable phases can be retained at room temperature in nanomaterials, these phases generally corresponding to the high-temperature polymorph of the same material in bulk state. Additionally, size-dependent shifts in solubility limits and/or in the transition temperatures for on heating or on cooling cycles have been observed. ZrO2-Sc2O3 (zirconia-scandia) solid solutions are known to exhibit very high oxygen ion conductivity provided their structure is composed of cubic and/or pseudocubic tetragonal phases. Unfortunately, for solid zirconia-scandia polycrystalline samples with typical micrometrical average crystal sizes, the high-conductivity cubic phase is only stable above 600°C. Depending on composition, three low-conductivity rhombo-hedral phases (β, γ and δ) are stable below 600°C down to room temperature, within the compositional range of interest for SOFCs. In previous investigations, we showed that the rhombohedral phases can be avoided in nanopowders with average crystallite size lower than 35 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Less invasive and more effective cancer treatments have been the aim of research in recent decades, e.g. photothermal tumour ablation using gold nanorods. In this study we investigate the cell death pathways activated, and confirm the possibility of CTAB-coated nanoparticle use in vivo. Nanorods were synthesized by the seeding method; some of them were centrifuged and washed to eliminate soluble CTAB. The MTT cytotoxicity test was performed to evaluate cytotoxicity, and the particles' viability after their synthesis was assessed. Once it had been observed that centrifuged and washed nanorods are harmless, and that nanoparticles must be used within 48 h after their synthesis, in vivo hyperthermic treatment was performed.After irradiation, a tumour biopsy was subjected to a chemiluminescence assay to evaluate membrane lipoperoxidation, and to a TRAP assay to evaluate total antioxidant capacity. There was a 47 ºC rise in temperature observed at the tumour site. Animals irradiated with a laser (with or without nanorods) showed similar membrane lipoperoxidation, more intense than in control animals. The antioxidant capacity of experimental animal tumours was elevated. Our results indicate that necrosis is possibly the cell death pathway activated in this case, and that nanorod treatment is worthwhile.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A YSZ@Al2O3 nanocomposite was obtained by Al2O3 coating on the surface of yttrium stabilized zirconia via a polymeric precursor method. The resulting core–shell structures were characterized by X-ray diffraction, scanning electron microscopy, transmission electronic microscopy and PL spectra. The TEM micrographs clearly show a homogeneous Al2O3 shell around the ZrO2 core. The observed PL is related to surface–interface defects. Such novel technologies can, in principle, explore materials which are not available in the bulk single crystal form but their figure-of-merit is dramatically dependent on the surface–interface defect states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Time-resolved photoluminescence was employed to study electron-hole dynamics in radial heterostructured GaAs/AlGaAs/GaAs core/inner shell/outer shell nanowires. It was found that impurity random potential results in a red shift of the recombination time maximum with respect to the photoluminescence peak energy.