3 resultados para NONASSOCIATIVE ALGEBRA

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We apply Kolesnikov's algorithm to obtain a variety of nonassociative algebras defined by right anticommutativity and a "noncommutative" version of the Malcev identity. We use computer algebra to verify that these identities are equivalent to the identities of degree up to 4 satisfied by the dicommutator in every alternative dialgebra. We extend these computations to show that any special identity for Malcev dialgebras must have degree at least 7. Finally, we introduce a trilinear operation which makes any Malcev dialgebra into a Leibniz triple system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that the prime radical rad M of the free Malcev algebra M of rank more than two over a field of characteristic not equal 2 coincides with the set of all universally Engelian elements of M. Moreover, let T(M) be the ideal of M consisting of all stable identities of the split simple 7-dimensional Malcev algebra M over F. It is proved that rad M = J(M) boolean AND T(M), where J(M) is the Jacobian ideal of M. Similar results were proved by I. Shestakov and E. Zelmanov for free alternative and free Jordan algebras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.