27 resultados para NITRATE TOLERANCE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nitroglycerin (GIN) has been clinically used to treat angina pectoris and acute heart episodes for over 100 years. The effects of GTN have long been recognized and active research has contributed to the unraveling of numerous metabolic routes capable of converting GIN to the potent vasoactive messenger nitric oxide. Recently, the mechanism by which minute doses of GIN elicit robust pharmacological responses was revisited and eNOS activation was implicated as an important route mediating vasodilation induced by low GTN doses (1-50 nM). Here, we demonstrate that at such concentrations the pharmacologic effects of nitroglycerin are largely dependent on the phosphatidylinositol 3-kinase, Akt/PKB, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signal transduction axis. Furthermore, we demonstrate that nitroglycerin-dependent accumulation of 3,4,5-InsP(3), probably because of inhibition of PTEN, is important for eNOS activation, conferring a mechanistic basis for GIN pharmacological action at pharmacologically relevant doses. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In this study, we investigated the effect of the ruthenium complex [Ru(terpy)(bdq)NO+](3+) (TERPY) on the arterial pressure from renal hypertensive 2 kidney-1 clip (2K-1C) rats, which was compared with sodium nitroprusside (SNP). The most interesting finding was that the intravenous bolus injection of TERPY (2.5, 5.0, 7 mg/kg) had a dose-dependent hypotensive effect only in 2K-1C rats. On the other hand, SNP (35 and 70 mu g/kg) presented a similar hypotensive effect in both normotensive (2K) and 2K-1C although the effect of 70 mu g/kg was >35 mu g/kg. The injection of the nonselective NO-synthase inhibitor N-omega-nitro-L-arginine methyl ester (L-NAME) increased the arterial pressure in 2K and 2K-1C rats with a similar magnitude. After infusion of L-NAME, the hypotensive effect induced by TERPY and SNP was potentiated in both 2K and in 2K-1C rats. The administration of the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl increased the hypotensive effect induced by TERPY or SNP in both 2K and 2K-1C rats. The hypotensive effect induced by TERPY was longer than that produced by SNP. Taken together, our results show that the TERPY has a long-lasting hypotensive effect, which has a dose dependence and higher magnitude in 2K-1C compared with in 2K rats. In comparison with SNP, TERPY is less potent in inducing arterial pressure fall, but it presents a much longer hypotensive effect.
Resumo:
Nitric oxide (NO)-donors are pharmacologically active substances that in vivo or in vitro release NO. Their most common side effect is headache caused by cerebral vasodilatation. We previously demonstrated that the new NO-donor Ru(terpy)(bdq)NO](3+) (Terpy), synthesized in our laboratory, induces relaxation of rat aorta. This study aimed to verify the effect of Terpy and sodium nitroprusside (SNP) in basilar artery. We conducted vascular reactivity experiments on endothelium-denuded basilar rings. The concentrations of iron (Fe) and ruthenium (Ru) complex were analyzed in basilar artery lysates after incubation with NO donors by mass spectrometry. We also evaluated the NO released from SNP and Terpy by using confocal microscopy. Interestingly, Terpy did not induce relaxation of the basilar artery. SNP induced relaxation in a concentration-dependent way. NO donors cross the membrane of vascular smooth muscle and entered the cell. In spite of its permeability, Terpy did not release NO in the basilar artery. Otherwise, SNP released NO in the basilar artery cells cytoplasm. Taken together, our results demonstrate that the new NO donor (Terpy) failed to release NO and to induce relaxation in the basilar artery. The NO donor SNP induces vascular relaxation due to NO release in the vascular smooth muscle cells. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitrate reductase (NR, EC 1.6.6.1) activity in higher plants is regulated by a variety of environmental factors and oscillates with a characteristic diurnal rhythm. In this study, we have demonstrated that the diurnal cycle of NR expression and activity in pineapple (Ananas comosus, cv. Smooth Cayenne) can be strongly modified by changes in the day/night temperature regime. Plants grown under constant temperature (28 degrees C light/dark) showed a marked increase in the shoot NR activity (NRA) during the first half of the light period, whereas under thermoperiodic conditions (28 degrees C light/15 degrees C dark) significant elevations in the NRA were detected only in the root tissues at night. Under both conditions, increases in NR transcript levels occurred synchronically about 4 h prior to the corresponding elevation of the NRA. Diurnal analysis of endogenous cytokinins indicated that transitory increases in the levels of zeatin, zeatin riboside and isopentenyladenine riboside coincided with the accumulation of NR transcripts and preceded the rise of NRA in the shoot during the day and in the root at night, suggesting these hormones as mediators of the temperature-induced modifications of the NR cycle. Moreover, these cytokinins also induced NRA in pineapple when applied exogenously. Altogether, these results provide evidence that thermoperiodism can modify the diurnal cycle of NR expression and activity in pineapple both temporally and spatially, possibly by modulating the day/night changes in the cytokinin levels. A potential relationship between the day/night NR cycle and the photosynthetic pathway performed by the pineapple plants (C(3) or CAM) is also discussed.
Resumo:
Background: Drought is a major abiotic stress that affects crop productivity worldwide. Sugarcane can withstand periods of water scarcity during the final stage of culm maturation, during which sucrose accumulation occurs. Meanwhile, prolonged periods of drought can cause severe plant losses. Methodology/Principal Findings: In a previous study, we evaluated the transcriptome of drought-stressed plants to better understand sugarcane responses to drought. Among the up-regulated genes was Scdr1 (sugarcane drought-responsive 1). The aim of the research reported here was to characterize this gene. Scdr1 encodes a putative protein containing 248 amino acids with a large number of proline (19%) and cysteine (13%) residues. Phylogenetic analysis showed that ScDR1is in a clade with homologs from other monocotyledonous plants, separate from those of dicotyledonous plants. The expression of Scdr1 in different varieties of sugarcane plants has not shown a clear association with drought tolerance. Conclusions/Significance: The overexpression of Scdr1 in transgenic tobacco plants increased their tolerance to drought, salinity and oxidative stress, as demonstrated by increased photosynthesis, water content, biomass, germination rate, chlorophyll content and reduced accumulation of ROS. Physiological parameters, such as transpiration rate (E), net photosynthesis (A), stomatal conductance (gs) and internal leaf CO2 concentration, were less affected by abiotic stresses in transgenic Scdr1 plants compared with wild-type plants. Overall, our results indicated that Scdr1 conferred tolerance to multiple abiotic stresses, highlighting the potential of this gene for biotechnological applications.
Resumo:
Background: Kinins participate in the pathophysiology of obesity and type 2 diabetes by mechanisms which are not fully understood. Kinin B-1 receptor knockout mice (B-1(-/-)) are leaner and exhibit improved insulin sensitivity. Methodology/Principal Findings: Here we show that kinin B-1 receptors in adipocytes play a role in controlling whole body insulin action and glucose homeostasis. Adipocytes isolated from mouse white adipose tissue (WAT) constitutively express kinin B-1 receptors. In these cells, treatment with the B-1 receptor agonist des-Arg(9)-bradykinin improved insulin signaling, GLUT4 translocation, and glucose uptake. Adipocytes from B-1(-/-) mice showed reduced GLUT4 expression and impaired glucose uptake at both basal and insulin-stimulated states. To investigate the consequences of these phenomena to whole body metabolism, we generated mice where the expression of the kinin B-1 receptor was limited to cells of the adipose tissue (aP2-B-1/B-1(-/-)). Similarly to B-1(-/-) mice, aP2-B-1/B-1(-/-) mice were leaner than wild type controls. However, exclusive expression of the kinin B1 receptor in adipose tissue completely rescued the improved systemic insulin sensitivity phenotype of B-1(-/-) mice. Adipose tissue gene expression analysis also revealed that genes involved in insulin signaling were significantly affected by the presence of the kinin B-1 receptor in adipose tissue. In agreement, GLUT4 expression and glucose uptake were increased in fat tissue of aP2-B-1/B-1(-/-) when compared to B-1(-/-) mice. When subjected to high fat diet, aP2-B-1/B-1(-/-) mice gained more weight than B-1(-/-) littermates, becoming as obese as the wild types. Conclusions/Significance: Thus, kinin B-1 receptor participates in the modulation of insulin action in adipocytes, contributing to systemic insulin sensitivity and predisposition to obesity.
Resumo:
Low temperatures at the initial stages of rice development prevent fast germination and seedling establishment and may cause significant productivity losses. In order to develop rice cultivars exhibiting cold tolerance, it is necessary to investigate genetic resources, providing basic knowledge to allow the introduction of genes involved in low temperature germination ability from accessions into elite cultivars. Japanese rice accessions were evaluated at the germination under two conditions: 13 degrees C for 28 days (cold stress) and 28 degrees C for seven days (optimal temperature). The traits studied were coleoptile and radicle length under optimal temperature, coleoptile and radicle length under cold and percentage of the reduction in coleptile and radicle length due to low temperature. Among the accessions studied, genetic variation for traits related to germination under low temperatures was observed and accessions exhibiting adequate performance for all investigated traits were identified. The use of multivariate analysis allowed the identification of the genotypes displaying cold tolerance by smaller reductions in coleoptile and radicle lenght in the presence of cold and high vigour, by higher coleoptile and radicle growth under cold.
Resumo:
Background. The mechanisms underlying pleural inflammation and pleurodesis are poorly understood. We hypothesized that the cytokines transforming growth factor beta (TGF beta 1) and vascular endothelial growth factor (VEGF) play a major role in pleurodesis after intrapleural silver nitrate (SN) injection. Method. Forty rabbits received intrapleurally 0.5% SN alone or 0.5% SN + anti-TGF beta 1, anti-IL-8, or anti-VEGF. After 28 days, the animals were euthanized and macroscopic pleural adhesions, microscopic pleural fibrosis, and collagen deposition were analyzed for characterization of the degree of pleurodesis (scores 0-4). Results. Scores of pleural adhesions, pleural fibrosis, total collagen, and thin collagen fibers deposition after 28 days were significantly lower for 0.5% SN + anti-TGF beta 1 and 0.5% SN + anti-VEGF. Significant correlations were found between macroscopic adhesion and microscopic pleural fibrosis with total collagen and thin collagen fibers. Conclusions. We conclude that both TGF beta 1 and VEGF, but not IL-8, mediate the pleural inflammatory response and pleurodesis induced by SN.
Resumo:
Managed environments in the form of well watered and water stressed trials were performed to study the genetic basis of grain yield and stay green in sorghum with the objective of validating previously detected QTL. As variations in phenology and plant height may influence QTL detection for the target traits, QTL for flowering time and plant height were introduced as cofactors in QTL analyses for yield and stay green. All but one of the flowering time QTL were detected near yield and stay green QTL. Similar co-localization was observed for two plant height QTL. QTL analysis for yield, using flowering time/plant height cofactors, led to yield QTL on chromosomes 2, 3, 6, 8 and 10. For stay green, QTL on chromosomes 3, 4, 8 and 10 were not related to differences in flowering time/plant height. The physical positions for markers in QTL regions projected on the sorghum genome suggest that the previously detected plant height QTL, Sb-HT9-1, and Dw2, in addition to the maturity gene, Ma5, had a major confounding impact on the expression of yield and stay green QTL. Co-localization between an apparently novel stay green QTL and a yield QTL on chromosome 3 suggests there is potential for indirect selection based on stay green to improve drought tolerance in sorghum. Our QTL study was carried out with a moderately sized population and spanned a limited geographic range, but still the results strongly emphasize the necessity of corrections for phenology in QTL mapping for drought tolerance traits in sorghum.
Resumo:
The high consumption of fructose is linked to the increase in various characteristics of the metabolic syndrome. Fish oil is beneficial for the treatment of these comorbidities, such as insulin resistance, dyslipidemia, and hepatic steatosis. The objective of this study was to evaluate the consequences of the administration of fish oil concomitant to fructose ingestion during the experiment (45 days) and during the final 15 days in high-fructose-fed rats. Male Wistar rats were divided into 5 groups: control; those receiving 10% fish oil (FO); those receiving 60% fructose (Fr); those receiving 60% fructose and 10% fish oil for 45 days (FrFO); and those receiving fructose plus soybean oil for 30 days and fish oil for the final 15 days of the study (FrFO15). There was an increase in triacylglycerol, serum total cholesterol, and hepatic volume in the Fr group. The FO and FrFO groups experienced an increase in lipid peroxidation and a decrease in serum reduced glutathione. The FrFO group suffered greater hepatic injury, with increased alanine aminotransferase levels and DNA damage. Marked n-3 incorporation occurred in the groups receiving fish oil, favoring a better response to the oral glucose tolerance test. Fructose induced comorbidities of the metabolic syndrome, and the use of fish oil promoted a better glucose tolerance, although it was accompanied by more hepatocyte damage.
Resumo:
Background. Nuclear factor kappa B (NF kappa B) plays a potential role in tolerance by orchestrating onset and resolution of inflammation and regulatory T cell differentiation through subunit c-Rel. We characterized cellular infiltrates and expression of NF kappa B1, c-Rel and its upstream regulators phosphatidylinositol 3-kinase/RAC-alpha serine/threonine kinase, in allograft biopsies from patients with spontaneous clinical operational tolerance (COT). Methods. Paraffin-fixed kidney allograft biopsies from 40 patients with COT (n=4), interstitial rejection (IR; n=12), borderline changes (BC; n=12), and long-term allograft function without rejection (NR; n=12) were used in the study. Cellular infiltrates and immunohistochemical expression of key proteins of the NF kappa B pathway were evaluated in the cortical tubulointerstitium and in cellular infiltrates using digital image analysis software. Results were given as mean +/- SEM. Results. Biopsies from patients with COT exhibited a comparable amount of cellular infiltrate to IR, BC, and NR (COT, 191 +/- 81; IR, 291 +/- 62; BC, 178 +/- 45; and NR, 210 +/- 42 cells/mm(2)) but a significantly higher proportion of forkhead box P3-positive cells (COT, 11%+/- 1.7%; IR, 3.5%+/- 0.70%; BC, 3.4%+/- 0.57%; and NR, 3.7%+/- 0.78% of infiltrating cells; P=0.02). c-Rel expression in cellular infiltrates was significantly elevated in IR, BC, and NR when analyzing the number of positive cells per mm(2) (P=0.02) and positive cells per infiltrating cells (P=0.04). In contrast, tubular PI3K and c-Rel expression were significantly higher in IR and BC but not in NR compared with COT (P=0.03 and P=0.006, respectively). With RAC-alpha serine-threonine kinase, similar tendencies were observed (P=0.2). Conclusions. Allografts from COT patients show significant cellular infiltrates but a distinct expression of proteins involved in the NF kappa B pathway and a higher proportion of forkhead box P3-positive cells.
Resumo:
Transplanted individuals in operational tolerance (OT) maintain long-term stable graft function after completely stopping immunosuppression. Understanding the mechanisms involved in OT can provide valuable information about pathways to human transplantation tolerance. Here we report that operationally tolerant individuals display quantitative and functional preservation of the B-c ell compartment in renal transplantation. OT exhibited normal numbers of circulating total B cells, naive, memory and regulatory B cells (Bregs) as well as preserved B-cell receptor repertoire, similar to healthy individuals. In addition, OT also displayed conserved capacity to activate the cluster of differentiation 40 (CD40)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in Bregs, in contrast, with chronic rejection. Rather than expansion or higher activation, we show that the preservation of the B-cell compartment favors OT. Online address: http://www.molmed.org doi: 10.2119/molmed.2011.00281
Resumo:
Autotrophic denitrification coupled with sulfide oxidation represents an interesting alternative for the simultaneous removal of nitrate/nitrite and sulfide from wastewaters. The applicability of such bioprocess is especially advantageous for the post treatment of effluents from anaerobic reactors, since they usually produce sulfides, which can be used as endogenous electron donor for autotrophic denitrification. This study evaluated the effect of sulfide concentration on this bioprocess using nitrate and nitrite as electron acceptors in vertical fixed-bed reactors. The results showed that intermediary sulfur compounds were mainly produced when excess of electron donor was applied, which was more evident when nitrate was used. Visual evidences suggested that elemental sulfur was the intermediary compound produced. There was also evidence that the elemental sulfur previously formed was being used when sulfide was applied in stoichiometric concentration relative to nitrate/nitrite. Nitrite was more readily consumed than nitrate. For both electron acceptors and sulfide concentrations tested, autotrophic denitrification was not affected by residual heterotrophic denitrification via endogenic activity, occurring as a minor additional nitrogen removal process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The sera of a retrospective cohort (n = 41) composed of children with well characterized cow's milk allergy collected from multiple visits were analyzed using a protein microarray system measuring four classes of immunoglobulins. The frequency of the visits, age and gender distribution reflected real situation faced by the clinicians at a pediatric reference center for food allergy in 530 Paulo, Brazil. The profiling array results have shown that total IgG and IgA share similar specificity whilst IgM and in particular IgE are distantly related. The correlation of specificity of IgE and IgA is variable amongst the patients and this relationship cannot be used to predict atopy or the onset of tolerance to milk. The array profiling technique has corroborated the clinical selection criteria for this cohort albeit it clearly suggested that 4 out of the 41 patients might have allergies other than milk origin. There was also a good correlation between the array data and ImmunoCAP results, casein in particular. By using qualitative and quantitative multivariate analysis routines it was possible to produce validated statistical models to predict with reasonable accuracy the onset of tolerance to milk proteins. If expanded to larger study groups, the array profiling in combination with the multivariate techniques show potential to improve the prognostic of milk allergic patients. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this study was to perform laboratory experiments on calcium nitrate addition to sediments of a tropical eutrophic urban reservoir (Ibirite reservoir, SE Brazil) to immobilize the reactive soluble phosphorus (RSP) and to evaluate possible geochemical changes and toxic effects caused by this treatment. Reductions of 75 and 89% in the concentration of RSP were observed in the water column and interstitial water, respectively, after 145 days of nitrate addition. The nitrate application increased the rate of autotrophic denitrification, causing a consumption of 98% of the added nitrate and oxidation of 99% of the acid volatile sulfide. As a consequence, there were increases in the sulfate and iron (II) concentrations in the sediment interstitial water and water column, as well as changes in the copper speciation in the sediments. Toxicity tests initially indicated that the high concentrations of nitrate and nitrite in the sediment interstitial water (up to 2300 mg L-1 and 260 mg L-1, respectively) were the major cause of mortality of Ceriodaphnia silvestrii and Chironomus xanthus. However, at the end of the experiment, the sediment toxicity was completely removed and a reduction in the 48 h-EC50 of the water was also observed. Based on these results we can say that calcium nitrate treatment proved to be a valuable tool in remediation of eutrophic aquatic ecosystems leading to conditions that can support a great diversity of organisms after a restoration period. (C) 2012 Elsevier Ltd. All rights reserved.