14 resultados para Multi-objective optimization techniques

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current SoC design trends are characterized by the integration of larger amount of IPs targeting a wide range of application fields. Such multi-application systems are constrained by a set of requirements. In such scenario network-on-chips (NoC) are becoming more important as the on-chip communication structure. Designing an optimal NoC for satisfying the requirements of each individual application requires the specification of a large set of configuration parameters leading to a wide solution space. It has been shown that IP mapping is one of the most critical parameters in NoC design, strongly influencing the SoC performance. IP mapping has been solved for single application systems using single and multi-objective optimization algorithms. In this paper we propose the use of a multi-objective adaptive immune algorithm (M(2)AIA), an evolutionary approach to solve the multi-application NoC mapping problem. Latency and power consumption were adopted as the target multi-objective functions. To compare the efficiency of our approach, our results are compared with those of the genetic and branch and bound multi-objective mapping algorithms. We tested 11 well-known benchmarks, including random and real applications, and combines up to 8 applications at the same SoC. The experimental results showed that the M(2)AIA decreases in average the power consumption and the latency 27.3 and 42.1 % compared to the branch and bound approach and 29.3 and 36.1 % over the genetic approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predição de estruturas de proteínas (PSP) é um problema computacionalmente complexo. Modelos simplificados da molécula proteica (como o Modelo HP) e o uso de Algoritmos Evolutivos (AEs) estão entre as principais técnicas investigadas para PSP. Entretanto, a avaliação de uma estrutura representada pelo Modelo HP considera apenas o número de contatos hidrofóbicos, não possibilitando distinguir entre estruturas com o mesmo número de contatos hidrofóbicos. Neste trabalho, é apresentada uma nova formulação multiobjetivo para PSP em Modelo HP. Duas métricas são avaliadas: o número de contatos hidrofóbicos e a distância entre os aminoácidos hidrofóbicos, as quais são tratados pelo AE Multiobjetivo em Tabelas (AEMT). O algoritmo mostrou-se rápido e robusto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, researches have shown that the performance of metaheuristics can be affected by population initialization. Opposition-based Differential Evolution (ODE), Quasi-Oppositional Differential Evolution (QODE), and Uniform-Quasi-Opposition Differential Evolution (UQODE) are three state-of-the-art methods that improve the performance of the Differential Evolution algorithm based on population initialization and different search strategies. In a different approach to achieve similar results, this paper presents a technique to discover promising regions in a continuous search-space of an optimization problem. Using machine-learning techniques, the algorithm named Smart Sampling (SS) finds regions with high possibility of containing a global optimum. Next, a metaheuristic can be initialized inside each region to find that optimum. SS and DE were combined (originating the SSDE algorithm) to evaluate our approach, and experiments were conducted in the same set of benchmark functions used by ODE, QODE and UQODE authors. Results have shown that the total number of function evaluations required by DE to reach the global optimum can be significantly reduced and that the success rate improves if SS is employed first. Such results are also in consonance with results from the literature, stating the importance of an adequate starting population. Moreover, SS presents better efficacy to find initial populations of superior quality when compared to the other three algorithms that employ oppositional learning. Finally and most important, the SS performance in finding promising regions is independent of the employed metaheuristic with which SS is combined, making SS suitable to improve the performance of a large variety of optimization techniques. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the development of a procedure, which enables the analysis of nine pharmaceutical drugs in wastewater using gas chromatography-mass spectrometry (GC-MS) associated with solid-phase microextraction (SPME) for the sample preparation. Experimental design was applied to optimize the in situ derivatization and the SPME extraction conditions. Ethyl chloroformate (ECF) was employed as derivatizing agent and polydimethylsiloxane-divinylbenzene (PDMS-DVB) as the SPME fiber coating. A fractional factorial design was used to evaluate the main factors for the in situ derivatization and SPME extraction. Thereafter, a Doehlert matrix design was applied to find out the best experimental conditions. The method presented a linear range from 0.5 to 10 mu g/L, and the intraday and interday precision were lower than 16%. Applicability of the method was verified from real influent and effluent samples of a wastewater treatment plant, as well as from samples of an industry wastewater and a river.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Strategic Environmental Assessment (SEA) of the sugar and alcohol sector guides a territorial and sectoral planning that benefits most of the local society and supports this economic activity in all its stages. In this way, the present work aims to determine an index of aggregation of the indicators generated in the baseline of the SEA process, called Index of Sustainability of Expansion of the Sugar and Alcohol Sector (IScana). For this, it was used the normalization of the indicators of each city by the fuzzy logic and attribution of weights by the Analytic Hierarchy Process (AHP). Then, the IScana values had been spatialized in the region of 'Grande Dourados'-Mato Grosso do Sul State. The northern portion concentrated the highest values of IScana, 0.48 and 0.55, referring to the cities of Nova Alvorada do Sul and Rio Brilhante, while, in the central portion, the city of Dourados presented the lowest value, 0.10. The selection of the set of indicators forming the IScana, and their relative importance, was satisfactory for the application of fuzzy logic and AHP techniques. The IScana index supplies objective information regarding the diagnosis of the region for the application of SEA.