13 resultados para Microscopy, Electron
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The aim of this study was to analyze the rat temporomandibular joint (TMJ) synovial membrane at different ages using light, scanning, and transmission electron microscopy. Under light microscopic analysis, the TMJ structures were observed such as condyle, capsule, disk, the synovial membrane collagen type, and cells distribution. In the scanning electron microscopy, the synovial membrane surface exhibited a smooth aspect in young animals and there was an increase with ageing in the number of folds. The transmission electron microscopic analysis showed more synoviocytes in the synovial layer in the young group and still a great number of vesicles and cisterns dilation of rough endoplasmic reticulum in the aged group. In the three groups, a dense layer of collagen fibers in the synovial layer and cytoplasmic extensions were clearly seen. It was possible to conclude that synovial membrane structures in aged group showed alterations contributing to the decrease in joint lubrication and in the sliding between disk and joint surfaces. These characteristic will reflect in biomechanics of chewing, and may cause the TMJ disorders, currently observed in clinical processes. Microsc. Res. Tech. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Background: Fast post-implantation stent endothelialization is desirable for theoretically reducing the possibility of stent thrombosis. Objective: To evaluate the extent of sirolimus-eluting stent strut endothelialization (delivered from the luminal and abluminal aspects or abluminal aspect only) in the iliac arteries of rabbits. Methods: The iliac arteries of 10 rabbits were implanted with four sirolimus-eluting stents in the luminal and abluminal aspects, three sirolimus-eluting stents in the abluminal aspect, six polymer-coated stents, and four uncoated stents. After four weeks, the rabbits were euthanized and scanning electron microscopy was performed to quantify the area of exposed stent strut as well as the percentage of endothelialization. Results: The area (mean +/- SD) (mm(2)) of exposed uncoated stent struts, polymer-coated stents, sirulimus-eluting stent in the abluminal and luminal aspects and sirolimus-eluting stent in the abluminal aspect was 0.12 +/- 0.08, 0.09 +/- 0.12, 0.60 +/- 0.67 and 0.05 +/- 0.04, respectively (p = 0.120). The percentage of endothelialization (mean +/- SD) (%) of uncoated stents, polymer-coated stents, sirolimus-eluting stents in the luminal and abluminal aspects and sirolimus-eluting stents in the abluminal aspect was 99 +/- 01, 99 +/- 0. 97 +/- 03 and 99 +/- 0, respectively (p = 0.133). Conclusion: After four weeks of implantation in the iliac arteries of rabbits, both the sirolimus-eluting stents in the luminal plus abluminal aspects and those in the abluminal aspect only showed stent strut endothelialization rates similar to those of the other types of non-drug eluting stents. (Arq Bras Cardiol 2012;99(6):1123-1128)
Resumo:
Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.
Resumo:
FUNDAMENTO: A rápida endotelização pós-implante de stent é ocorrência desejável por teoricamente reduzir a possibilidade de trombose do stent. OBJETIVO: Avaliar a extensão da endotelização de hastes de stents eluidores de sirolimus (liberados da face luminal e abluminal e abluminal exclusivamente) em artérias ilíacas de coelhos. MÉTODOS: Foram implantados em artérias ilíacas de 10 coelhos quatro stents eluidores de sirolimus na face luminal e abluminal, três stents eluidores de sirolimus na face abluminal, seis stents recobertos com polímero e quatro stents sem recobrimento. Após quatro semanas, foi realizada eutanásia e utilizou-se microscopia eletrônica de varredura para quantificação da área de hastes de stent exposta e da porcentagem de endotelização. RESULTADOS: A área (média ± DP) (mm²) de hastes expostas de stent sem recobrimento, stent recoberto com polímero, stent eluidor de sirolimus na face luminal e abluminal e stent eluidor de sirolimus na face abluminal foi de 0,12 ± 0,08; 0,09 ± 0,12; 0,60 ± 0,67 e 0,05 ± 0,04 respectivamente (p = 0,120). A porcentagem de endotelização (média ± DP) (%) de stent sem recobrimento, stent recoberto com polímero, stent eluidor de sirolimus na face luminal e abluminal e stent eluidor de sirolimus na face abluminal foi de 99 ± 01; 99 ± 0; 97 ± 03 e 99 ± 0 respectivamente (p = 0,133). CONCLUSÃO: Após quatro semanas de implante em artérias ilíacas de coelhos, os stents com liberação de sirolimus tanto da face luminal e abluminal quanto da face abluminal exclusivamente apresentaram taxas de endotelização de hastes de stent semelhantes aos apresentados nos demais tipos de stents sem eluição de medicamento.
Resumo:
The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.
Resumo:
Double-stranded pBS plasmid DNA was irradiated with gamma rays at doses ranging from 1 to 12 kGy and electron beams from 1 to 10 kGy. Fragment-size distributions were determined by direct visualization, using atomic force microscopy with nanometer-resolution operating in non-tapping mode, combined with an improved methodology. The fragment distributions from irradiation with gamma rays revealed discrete-like patterns at all doses, suggesting that these patterns are modulated by the base pair composition of the plasmid. Irradiation with electron beams, at very high dose rates, generated continuous distributions of highly shattered DNA fragments, similar to results at much lower dose rates found in the literature. Altogether, these results indicate that AFM could supplement traditional methods for high-resolution measurements of radiation damage to DNA, while providing new and relevant information.
Resumo:
The larval stage of Amblyomma oblongoguttatum Koch is redescribed using optical and scanning electron microscopy. Unfed larvae were obtained from a colony of A. oblongoguttatum originated from engorged females collected on domestic pigs from Monte Negro municipally (10 degrees 29'S, 63 degrees 32'W), State of Rondonia, Western Amazon, Brazil. Several characters are presented including the chaetotaxy of the idiosoma, palpi and Haller's organ, as well as morphological features of the idiosoma, gnathosoma and legs. In addition, the porotaxy (topographical and numerical patterns of integumentary structures) were presented by using a new nomenclature recently proposed. The chaetotaxy of the larvae of A. oblongoguttatum, in general, is similar to other Neotropical Amblyomma species. Three types of integumentary structures were observed on the idiosoma: lyrifissures, small glands, and large wax glands. Topographic and numerical patterns of the integumentary structures consisted of 5 pairs of large wax glands (1 dorsal/4 ventral), 24 pairs of lyrifissures (11 dorsal/13 ventral), and 49 pairs of small glands (28 dorsal/21 ventral). These topographic and numerical patterns found for A. oblongoguttatum show only minor differences when compared with patterns of other Amblyomma larvae, however, a few key features can be used for identification of these species.
Resumo:
The present study evaluated the interchangeability of prosthetic components for external hexagon implants by measuring the precision of the implant/abutment (I/A) interface with scanning electron microscopy. Ten implants for each of three brands (SIN, Conexão, Neodent) were tested with their respective abutments (milled CoCr collar rotational and non-rotational) and another of an alternative manufacturer (Microplant) in randomly arranged I/A combinations. The degree of interchangeability between the various brands of components was defined using the original abutment interface gap with its respective implant as the benchmark dimension. Accordingly, when the result for a given component placed on an implant was equal to or smaller then that gap measured when the original component of the same brand as the implant was positioned, interchangeability was considered valid. Data were compared with the Kruskal-Wallis test at 5% significance level. Some degree of misfit was observed in all specimens. Generally, the non-rotational component was more accurate than its rotational counterpart. The latter samples ranged from 0.6-16.9 µm, with a 4.6 µm median; and the former from 0.3-12.9 µm, with a 3.4 µm median. Specimens with the abutment and fixture from Conexão had larger microgap than the original set for SIN and Neodent (p<0.05). Even though the latter systems had similar results with their respective components, their interchanged abutments did not reproduce the original accuracy. The results suggest that the alternative brand abutment would have compatibility with all systems while the other brands were not completely interchangeable.
Resumo:
In the northeast of Brazil, caprine arthritis-encephalitis (CAE) is one of the key reasons for herd productivity decreasing that result in considerable economic losses. A comparative study was carried out using computed radiography (CR), histological analysis (HA), and scanning electronic microscopy (SEM) of the joints of CAE infected and normal goats. Humerus head surface of positive animals presented reduced joint space, increased bone density, and signs of degenerative joint disease (DJD). The carpal joint presented no morphological alterations in CR in any of the animals studied. Tarsus joint was the most affected, characterized by severe DJD, absence of joint space, increased periarticular soft tissue density, edema, and bone sclerosis. Histological analysis showed chronic tissue lesions, complete loss of the surface zone, absence of proteoglycans in the transition and radial zones and destruction of the cartilage surface in the CAE positive animals. Analysis by SEM showed ulcerated lesions with irregular and folded patterns on the joint surface that distinguished the limits between areas of normal and affected cartilage. The morphological study of the joints of normal and CAE positive goats deepened understanding of the alteration in the tissue bioarchitecture of the most affected joints. The SEM finding sustained previous histological reports, similar to those found for rheumatoid arthritis, suggesting that the goat infected with CAE can be considered as a potential model for research in this area.
Resumo:
We have explored the effects of atmospheric environment on Kelvin force microscopy (KFM) measurements of potential difference between different regions of test polycrystalline diamond surfaces. The diamond films were deposited by microwave plasma-assisted chemical vapor deposition, which naturally produces hydrogen terminations on the surface of the films formed. Selected regions were patterned by electron-beam lithography and chemical terminations of oxygen or fluorine were created by exposure to an oxygen or fluorine plasma source. For KFM imaging, the samples were mounted in a hood with a constant flow of helium gas. Successive images were taken over a 5-h period showing the effect of the environment on KFM imaging. We conclude that the helium flow removes water molecules adsorbed on the surface of the samples, resulting in differences in surface potential between adjacent regions. The degree of water removal is different for surfaces with different terminations. The results highlight the importance of taking into account the atmospheric environment when carrying out KFM analysis. (C) 2012 Wiley Periodicals, Inc.
Resumo:
As a part of the AMAZE-08 campaign during the wet season in the rainforest of central Amazonia, an ultraviolet aerodynamic particle sizer (UV-APS) was operated for continuous measurements of fluorescent biological aerosol particles (FBAP). In the coarse particle size range (> 1 mu m) the campaign median and quartiles of FBAP number and mass concentration were 7.3x10(4) m(-3) (4.0-13.2x10(4) m(-3)) and 0.72 mu g m(-3) (0.42-1.19 mu g m(-3)), respectively, accounting for 24% (11-41%) of total particle number and 47% (25-65%) of total particle mass. During the five-week campaign in February-March 2008 the concentration of coarse-mode Saharan dust particles was highly variable. In contrast, FBAP concentrations remained fairly constant over the course of weeks and had a consistent daily pattern, peaking several hours before sunrise, suggesting observed FBAP was dominated by nocturnal spore emission. This conclusion was supported by the consistent FBAP number size distribution peaking at 2.3 mu m, also attributed to fungal spores and mixed biological particles by scanning electron microscopy (SEM), light microscopy and biochemical staining. A second primary biological aerosol particle (PBAP) mode between 0.5 and 1.0 mu m was also observed by SEM, but exhibited little fluorescence and no true fungal staining. This mode may have consisted of single bacterial cells, brochosomes, various fragments of biological material, and small Chromalveolata (Chromista) spores. Particles liquid-coated with mixed organic-inorganic material constituted a large fraction of observations, and these coatings contained salts likely from primary biological origin. We provide key support for the suggestion that real-time laser-induce fluorescence (LIF) techniques using 355 nm excitation provide size-resolved concentrations of FBAP as a lower limit for the atmospheric abundance of biological particles in a pristine environment. We also show some limitations of using the instrument for ambient monitoring of weakly fluorescent particles < 2 mu m. Our measurements confirm that primary biological particles, fungal spores in particular, are an important fraction of supermicron aerosol in the Amazon and that may contribute significantly to hydrological cycling, especially when coated by mixed inorganic material.
Resumo:
This study aimed to evaluate, ex vivo, the nanoleakage in dentinal tubules, the linear infiltration of silver nitrate in the dentin wall/root-end filling material interface, and the presence of gaps in this interface in root-end cavities filled with 4 filling materials. Forty-eight disto-buccal root canals of maxillary molars were instrumented and filled. Retrograde cavities were prepared with ultrasonic points (apical 2 mm). The samples were divided into 2 control groups (n = 4) and 4 experimental groups (n = 10): Group I white mineral trioxide aggregate (MTA); Group II Super EBA; Group III Portland cement; and Group IV Sealer 26. After 1 week, the specimens were subjected to silver nitrate and prepared for SEM (backscattered electrons). In the apical-apical segment, an area with significantly higher leakage was observed for Super EBA, followed by Portland cement, MTA, and Sealer 26 (P = 0.0054). In the medium and cervical segments, all materials showed the same leakage behavior (P = 0.1815 and P = 0.1723, respectively). The linear infiltration at the dentin wall/root-end filling material interface was higher with Super EBA than the other groups. No differences in the percentage of gaps along the 3 mm of dentin wall/root-end filling material interface between the 4 materials were evident (P > 0.05). Nanoleakage occurred mainly in the apical segment of the samples, and Super EBA showed the highest values. The area and linear leakage were lower in the middle and coronal segments, regardless of the root-end filling material. No material perfectly sealed the root-end cavities, which allowed for the leakage occurrence. Microsc. Res. Tech. 75:796800, 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.