17 resultados para Ion channel-like activity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment. Methods The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test. Results The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO. Conclusion This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective To determine whether activation of transient receptor potential vanilloid 4 (TRPV-4) induces inflammation in the rat temporomandibular joint (TMJ), and to assess the effects of TRPV-4 agonists and proinflammatory mediators, such as a protease-activated receptor 2 (PAR-2) agonist, on TRPV-4 responses. Methods Four hours after intraarticular injection of carrageenan into the rat joints, expression of TRPV-4 and PAR-2 in trigeminal ganglion (TG) neurons and in the TMJs were evaluated by real-time reverse transcriptionpolymerase chain reaction and immunofluorescence, followed by confocal microscopy. The functionality of TRPV-4 and its sensitization by a PAR-2activating peptide (PAR-2AP) were analyzed by measuring the intracellular Ca2+ concentration in TMJ fibroblast-like synovial cells or TG neurons. Plasma extravasation, myeloperoxidase activity, and the head-withdrawal threshold (index of mechanical allodynia) were evaluated after intraarticular injection of selective TRPV-4 agonists, either injected alone or coinjected with PAR-2AP. Results In the rat TMJs, TRPV-4 and PAR-2 expression levels were up-regulated after the induction of inflammation. Two TRPV-4 agonists specifically activated calcium influx in TMJ fibroblast-like synovial cells or TG neurons. In vivo, the agonists triggered dose-dependent increases in plasma extravasation, myeloperoxidase activity, and mechanical allodynia. In synovial cells or TG neurons, pretreatment with PAR-2AP potentiated a TRPV-4 agonistinduced increase in [Ca2+]i. In addition, TRPV-4 agonistinduced inflammation was potentiated by PAR-2AP in vivo. Conclusion In this rat model, TRPV-4 is expressed and functional in TG neurons and synovial cells, and activation of TRPV-4 in vivo causes inflammation in the TMJ. Proinflammatory mediators, such as PAR-2 agonists, sensitize the activity of TRPV-4. These results identify TRPV-4 as an important signal of inflammation in the joint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ether A go-go (Eag) gene encodes the voltage-gated potassium (K+) ion channel Kv10.1, whose function still remains unknown. As dopamine may directly affect K+ channels, we evaluated whether a nigrostriatal dopaminergic lesion induced by the neurotoxin 6-hydroxydopamine (6-OHDA) would alter Eag1-K+ channel expression in the rat basal ganglia and related brain regions. Male Wistar rats received a microinjection of either saline or 6-OHDA (unilaterally) into the medial forebrain bundle. The extent of the dopaminergic lesion induced by 6-OHDA was evaluated by apomorphine-induced rotational behavior and by tyrosine hydroxylase (TH) immunoreactivity. The 6-OHDA microinjection caused a partial or complete lesion of dopaminergic cells, as well as a reduction of Eag1+ cells in a manner proportional to the extent of the lesion. In addition, we observed a decrease in TH immunoreactivity in the ipsilateral striatum. In conclusion, the expression of the Eag1-K+-channel throughout the nigrostriatal pathway in the rat brain, its co-localization with dopaminergic cells and its reduction mirroring the extent of the lesion highlight a physiological circuitry where the functional role of this channel can be investigated. The Eag1-K+ channel expression in dopaminergic cells suggests that these channels are part of the diversified group of ion channels that generate and maintain the electrophysiological activity pattern of dopaminergic midbrain neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article were studied two xanthone derivatives known as 1,5-dihydroxy-8-methoxyxanthone (I) and 1,3,7-trihydroxy-8-methoxyxanthone (II), which show one water molecule into their crystal structures. In xanthone I, there are water wires contributing to build up channel-like cavities along the c axis, whereas in xanthone II the water is surrounded by three xanthone molecules forming a cage-type structure. The geometries of I and II were optimized using the density functional theory method with B3LYP functional, and the results were compared with crystal structure. Both theoretical and experimental investigations reveal a concordance between structural parameters, with the xanthone core presenting an almost flat conformation and substituents adopting the more stable orientations. In the two compounds, the hydroxyl group linked at position 1 is involved in a resonance-assisted hydrogen bond with the carbonyl group. Besides, the supramolecular arrangement of the host/guest systems are stabilized mainly by classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) involving xanthone-to-water and xanthone-to-xanthone. In addition, C-H center dot center dot center dot O weak hydrogen bonds, as well as pi-pi interactions play an important role to stabilize the crystal self-assembly of xanthones I and II. The results reported here underline the role of inclusion of water molecules and their different arrangement into the crystal structure of two xanthone host/guest systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crotamine, a 5-kDa peptide, possesses a unique biological versatility. Not only has its cell-penetrating activity become of clinical interest but, moreover, its potential selective antitumor activity is of great pharmacological importance. In the past, several studies have attempted to elucidate the exact molecular target responsible for the crotamine-induced skeletal muscle spasm. The aim of this study was to investigate whether crotamine affects voltage-gated potassium (K-V) channels in an effort to explain its in vivo effects. Crotamine was studied on ion channel function using the two-electrode voltage clamp technique on 16 cloned ion channels (12 K-V channels and 4 Na-V channels), expressed in Xenopus laevis oocytes. Crotamine selectively inhibits K-V 1.1, K-V 1.2, and K-V 1.3 channels with an IC50 of similar to 300 nM, and the key amino acids responsible for this molecular interaction are suggested. Our results demonstrate for the first time that the symptoms, which are observed in the typical crotamine syndrome, may result from the inhibition of K-V channels. The ability of crotamine to inhibit the potassium current through K-V channels unravels it as the first snake peptide with the unique multifunctionality of cell-penetrating and antitumoral activity combined with K-V channel-inhibiting properties. This new property of crotamine might explain some experimental observations and opens new perspectives on pharmacological uses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases from the midgut gland of the Farfantepenaeus paulensis juveniles were assessed. Enzyme activity was determined using protease substrates and inhibitors. The effect of pH, temperature and calcium on proteolytic activity was assayed. Caseinolytic activity was analysed in substrate-sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Trypsin, chymotrypsin and leucine aminopeptidase activity was detected. Proteolytic activity was strongly inhibited by the specific trypsin inhibitors. Tosyl-phenylalanine chloromethyl ketone inhibited 59.3% of chymotrypsin activity. The greatest trypsin-like activity occurred at pH 8.0 and 45 degrees C. Chymotrypsin-like activity reached maximal values at alkaline pH (7.2-9.0) and 55 degrees C. CaCl(2) did not increase trypsin-like activity, but rather inhibited it at concentrations of 30 (20%), 50 (30%) and 100 mM (50%). The substrate-SDS-PAGE zymogram revealed eight proteinase bands. Two possibly thermal-resistant (85 degrees C, 30 min) chymotrypsin isoforms were found, which were inhibited by phenyl-methyl-sulphonyl-fluoride. Aminopeptidase activity of enzyme extracts (Arg, Leu, Lys, Phe and Val) and the recommended concentrations of these essential amino acids in penaeid shrimp diets were positively correlated (P < 0.05). Beause protein digestion involves the combined action of different enzymes, adequate knowledge of shrimp digestion and enzyme characteristics is required for the assessment of the digestive potential of different feed sources and development of in vitro digestibility protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. Objective To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. Methods HUVEC were cultured in medium EBM2, pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Results Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new peptidic proteasome inhibitors were isolated as trace components from a Curacao collection of the marine cyanobacterium Symploca sp. Carmaphycin A (1) and carmaphycin B (2) feature a leucine-derived a,beta-epoxyketone warhead directly connected to either methionine sulfoxide or methionine sulfone. Their structures were elucidated on the basis of extensive NMR and MS analyses and confirmed by total synthesis, which in turn provided more material for further biological evaluations. Pure carmaphycins A and B were found to inhibit the beta 5 subunit (chymotrypsin-like activity) of the S. cerevisiae 20S proteasome in the low nanomolar range. Additionally, they exhibited strong cytotoxicity to lung and colon cancer cell lines, as well as exquisite antiproliferative effects in the NCI60 cell-line panel. These assay results as well as initial structural biology studies suggest a distinctive binding mode for these new inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulations of external current stimulations of dentate gyrus granule cells of rats with Status Epilepticus induced by pilocarpine and control rats were used to evaluate whether morphological differences alone between these cells have an impact on their electrophysiological behavior. The cell models were constructed using morphological information from tridimensional reconstructions with Neurolucida software. To evaluate the effect of morphology differences alone, ion channel conductances, densities and distributions over the dendritic trees of dentate gyrus granule cells were the same for all models. External simulated currents were injected in randomly chosen dendrites belonging to one of three different areas of dentate gyrus granule cell molecular layer: inner molecular layer, medial molecular layer and outer molecular layer. Somatic membrane potentials were recorded to determine firing frequencies and inter-spike intervals. The results show that morphologically altered granule cells from pilocarpine-induced epileptic rats are less excitable than control cells, especially when they are stimulated in the inner molecular layer, which is the target area for mossy fibers that sprout after pilocarpine-induced cell degeneration. This suggests that morphological alterations may act as a protective mechanism to allow dentate gyrus granule cells to cope with the increase of stimulation caused by mossy fiber sprouting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety-and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB1) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB1 and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB1-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB1-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB1 and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB1 receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders. Neuropsychopharmacology (2012) 37, 478-486; doi:10.1038/npp.2011.207; published online 21 September 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlortalidone (CTD) is an antihypertensive drug for which only two solid state phases have been structurally elucidated thus far. Here, we have prepared a chloroform solvate thereof, namely, CTD Form IV, and its structure was compared to those of Form I and Form III. Its two conformers exhibit a dual structural feature in relation to the antecedent polymorphs. Both CTD molecules of Form IV adopt a Form III-like conformation, which is featured, if the conformation of CTD Form I is used as a reference, by a rotation of about 90 degrees on the axis of the C-C bond bridging the substituted benzene and isoindolinyl rings. However, CTD Form IV assembles as in the Form I crystal packing despite the different stacking fashion of their centrosymmetric dimers. In contrast to Form I, there is no offset stacking in Form IV, which forces a bend of ca. 24 degrees between the planes passing through the isoindolinyl moieties of two [100]-stacked dimers. Chloroform molecules at a maximum stoichiometry of 0.25 mol per mol of the drug play a stabilizing role in the assembly of Form IV by filling the channels formed on the crystals.