17 resultados para In-plane bending moment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The influence of test method factors (notch shape, square or angular, and pre-cracking method, by tapping onto or pressing a razor blade) on the results obtained in plane strain fracture toughness test according to standard ASTM D5045 using SENB specimens made of a commercial PMMA resin were investigated. Results were analyzed quantitatively by comparing the obtained K-IC values and qualitatively by observing their effect on the Moire fringes observed using photoelasticity, showing that, at 95% significance level, the K-IC values are affected by the pre-cracking method, with the most conservative value being obtained when natural pre-cracks were introduced by tapping onto a razor blade (K-IC = 1.15 +/- 0.11 MPa.m(0.5)). This correlates with a perturbation in the stress field close to the pre-crack tip observed in the photoelasticity test sample when it was introduced by pressing the razor blade. Surprisingly, notch geometry only slightly affects the results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work reports the investigation on the structural differences between InAs quantum rings and their precursor quantum dots species as well as on the presence of piezoelectric fields and asymmetries in these nanostructures. The experimental results show significant reduction in the ring dimensions when the sizes of capped and uncapped ring and dot samples are compared. The iso-lattice parameter mapped by grazing-incidence x-ray diffraction has revealed the lateral extent of strained regions in the buried rings. A comparison between strain and composition of dot and ring structures allows inferring on how the ring formation and its final configuration may affect optical response parameters. Based on the experimental observations, a discussion has been introduced on the effective potential profile to emulate theoretically the ring-shape confinement. The effects of confinement and strain field modulation on electron and hole band structures are simulated by a multiband k.p calculation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733964]
Resumo:
Study design: Experimental, controlled, animal study. Objectives: To evaluate the functional effect of hyperbaric oxygen therapy administered shortly, one day after, and no intervention (control) in standardized experimental spinal cord lesions in Wistar rats. Setting: Sao Paulo, Brazil. Methods: In all, 30 Wistar rats with spinal cord lesions were divided into three groups: one group was submitted to hyperbaric oxygen therapy beginning half an hour after the lesion and with a total of 10 one-hour sessions, one session per day, at 2 atm; the second received the same treatment, but beginning on the day after the lesion; and the third received no treatment (control). The Basso, Beattie and Bresnahan scales were used for functional evaluation on the second day after the lesion and then weekly, until being killed 1 month later. Results: There were no significant differences between the groups in the functional analysis on the second day after the lesion. There was no functional difference comparing Groups 1 and 2 (treated shortly after or one day after) in any evaluation moment. On the 7th day, as well as on the 21st and 28th postoperative days, the evaluation showed that Groups 1 and 2 performed significantly better than the control group (receiving no therapy). Conclusion: Hyperbaric chamber therapy is beneficial in the functional recovery of spinal cord lesions in rats, if it is first administered just after spinal cord injury or within 24 h. Spinal Cord (2012) 50, 502-506; doi: 10.1038/sc.2012.16; published online 6 March 2012
Resumo:
This case report presents the experience of a training course on bioethics for nurses and physicians of the Family Health Strategy in Santo Andre, SP. This study is based on problem-based learning and deliberative bioethics, and aimed at presenting the deliberation procedure as a means of handling ethical issues. Contents were addressed in a cross-section manner through five sequential activity sessions at two different moments of concentration with one dispersion interval. In the first moment of concentration, key concepts and deliberative bioethics contents were developed. The second involved deliberation sessions on moral conflicts, which were selected and prepared during the dispersion interval. Participants evaluated the deliberation as an appropriate instrument to deal with the ethical issues they are faced with. Problem-based learning was an effective educational strategy for continuing education in deliberative bioethics.
Resumo:
Using Fluorescence Recovery After Photobleaching, we investigate the Brownian motion of DNA rod-like fragments in two distinct anisotropic phases with a local nematic symmetry. The height of the measurement volume ensures the averaging of the anisotropy of the in-plane diffusive motion parallel or perpendicular to the local nematic director in aligned domains. Still, as shown in using a model specifically designed to handle such a situation and predicting a non-Gaussian shape for the bleached spot as fluorescence recovery proceeds, the two distinct diffusion coefficients of the DNA particles can be retrieved from data analysis. In the first system investigated (a ternary DNA-lipid lamellar complex), the magnitude and anisotropy of the diffusion coefficient of the DNA fragments confined by the lipid bilayers are obtained for the first time. In the second, binary DNA-solvent system, the magnitude of the diffusion coefficient is found to decrease markedly as DNA concentration is increased from isotropic to cholesteric phase. In addition, the diffusion coefficient anisotropy measured within cholesteric domains in the phase coexistence region increases with concentration, and eventually reaches a high value in the cholesteric phase.
Resumo:
What would be the ""terrible loneliness"" and what would be the ""wonderful agreement"" in the present paper? The ""terrible loneliness"" is the only reality that a person perceives and/or thinks during the now going on. For the person, an enormous quantity of occurrences is in the present moment absent. A very small quantity of occurrences is present. The person is the only being in having this. And, this is only during a little moment. The person never thinks about his loneliness in this moment. On the contrary, he thinks he is plenty of people and full of occurrences. But, if he were thinking about reality, he would live in a terrible loneliness. How does he escape himself from this loneliness? He thinks that the probable occurrences are real occurrences. He may be right in a plenty of times. Going through what I call opening hypotheses-basic hypotheses and non-basic but important hypotheses-and going through what I call simply hypotheses he is able to sanction a wonderful agreement of human beings about the known parts of the Universe. However, they are hypotheses, not absolute realities.
Resumo:
This paper presents a study on the potential use of coconut fiber as material to produce particleboards, with two different densities (0.8 g/cm(3) and 1.0 g/cm3), using castor oil-based polyurethane adhesive and urea-formaldehyde. The quality of the product that can be produced by industry was evaluated according to the normative NBR 14.810:2006, where density, thickness swell (TS), absorption, modulus of elasticity (MOE), modulus of rupture (MOR) in static bending and internal bond (IB) were determined. From the results, there was a decrease in TS and increase in MOR of coconut fiber panels with polyurethane resin panels compared with coconut fiber and resin urea-formaldehyde. Scanning microscopy electronic images (SEM) indicated that castor oil-based polyurethane adhesive occupies the gaps between the particles, a factor that contributes to improved physical and mechanical properties of the panels. The assessment of durability through accelerated aging tests shows that panels protected with waterproofing material can be used in environments that have contact with moisture. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Assessing a full set of mechanical properties is a rather complicate task in the case of foams, especially if material models must be calibrated with these results. Many issues, for example anisotropy and heterogeneity, influence the mechanical behavior. This article shows through experimental analyses how the microstructure affects different experimental setups and it also quantifies the degree of anisotropy of a poly(vinyl chloride) foam. Monotonic and cyclic experimental tests were carried out using standard compression specimens and non-standard tensile specimens. Results are complemented and compared with the aid of a digital image correlation technique and scanning electron microscopy analyses. Mechanical properties (e.g., elastic and plastic Poisson's ratios) are evaluated for compression and tensile tests, for two different material directions (normal and in-plane). The material is found to be transversely isotropic. Differences in the results of the mechanical properties can be as high as 100%, or even more depending on the technique used and the loading direction. Also, the experimental analyses show how the material's microstructure behavior, like the evolution of the herein identified yield fronts and a spring back phenomenon, can influence the phenomenological response and the failure mechanisms as well as the hardening curves. POLYM. ENG. SCI., 52:2654-2663, 2012. (C) 2012 Society of Plastics Engineers
Resumo:
We study the caustic, evolute, Minkowski symmetry set and parallels of a smooth and regular curve in the Minkowski plane.
Resumo:
NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.
Resumo:
We study a strongly interacting "quantum dot 1" and a weakly interacting "dot 2" connected in parallel to metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits, which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias conductance measurements performed at finite temperatures.
Resumo:
Context. The ESO public survey VISTA variables in the Via Lactea (VVV) started in 2010. VVV targets 562 sq. deg in the Galactic bulge and an adjacent plane region and is expected to run for about five years. Aims. We describe the progress of the survey observations in the first observing season, the observing strategy, and quality of the data obtained. Methods. The observations are carried out on the 4-m VISTA telescope in the ZYJHK(s) filters. In addition to the multi-band imaging the variability monitoring campaign in the K-s filter has started. Data reduction is carried out using the pipeline at the Cambridge Astronomical Survey Unit. The photometric and astrometric calibration is performed via the numerous 2MASS sources observed in each pointing. Results. The first data release contains the aperture photometry and astrometric catalogues for 348 individual pointings in the ZYJHK(s) filters taken in the 2010 observing season. The typical image quality is similar to 0 ''.9-1 ''.0. The stringent photometric and image quality requirements of the survey are satisfied in 100% of the JHK(s) images in the disk area and 90% of the JHK(s) images in the bulge area. The completeness in the Z and Y images is 84% in the disk, and 40% in the bulge. The first season catalogues contain 1.28 x 10(8) stellar sources in the bulge and 1.68 x 10(8) in the disk area detected in at least one of the photometric bands. The combined, multi-band catalogues contain more than 1.63 x 10(8) stellar sources. About 10% of these are double detections because of overlapping adjacent pointings. These overlapping multiple detections are used to characterise the quality of the data. The images in the JHK(s) bands extend typically similar to 4 mag deeper than 2MASS. The magnitude limit and photometric quality depend strongly on crowding in the inner Galactic regions. The astrometry for K-s = 15-18 mag has rms similar to 35-175 mas. Conclusions. The VVV Survey data products offer a unique dataset to map the stellar populations in the Galactic bulge and the adjacent plane and provide an exciting new tool for the study of the structure, content, and star-formation history of our Galaxy, as well as for investigations of the newly discovered star clusters, star-forming regions in the disk, high proper motion stars, asteroids, planetary nebulae, and other interesting objects.
Resumo:
The electrical conductivity σ has been calculated for p-doped GaAs/Al0.3Ga0.7As and cubic GaN/Al0.3Ga0.7N thin superlattices (SLs). The calculations are done within a self-consistent approach to the k → ⋅ p → theory by means of a full six-band Luttinger-Kohn Hamiltonian, together with the Poisson equation in a plane wave representation, including exchange correlation effects within the local density approximation. It was also assumed that transport in the SL occurs through extended minibands states for each carrier, and the conductivity is calculated at zero temperature and in low-field ohmic limits by the quasi-chemical Boltzmann kinetic equation. It was shown that the particular minibands structure of the p-doped SLs leads to a plateau-like behavior in the conductivity as a function of the donor concentration and/or the Fermi level energy. In addition, it is shown that the Coulomb and exchange-correlation effects play an important role in these systems, since they determine the bending potential.