26 resultados para Immune Activation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Exposure to elevated levels of maternal cytokines can lead to functional abnormalities of the dopaminergic system in the adult offspring, including enhanced amphetamine (AMPH)-induced locomotion. Therefore, it seems reasonable to consider that offspring of challenged mothers would behave differently in models of addictive behavior, such as behavioral sensitization. Thus, we sought to evaluate the effects of prenatal exposure to lipopolysaccharide (LPS) on the locomotor response to acute and chronic AMPH treatment in male mice offspring. For this purpose, LPS (Escherichia coli 0127:B8; 120 mu g/kg) was administered intraperitoneally to pregnant Swiss mice on gestational day 17. At adulthood, male offspring were studied under one of the following conditions: (1) locomotor response to acute AMPH treatment (2.5 or 5.0 mg/kg) in an open field test; (2) behavioral sensitization paradigm, which consists of a daily injection of AMPH (1.0 mg/kg) for 10 days and observation of locomotion in the open field on days 1, 5, 10 (development phase), 15 and 17 (expression phase). The LPS stimulated offspring showed enhancement of the locomotor-stimulant effect after an acute AMPH challenge in comparison to baseline and saline pre-treated mice. They also showed development of behavioral sensitization earlier than the saline pre-treated group, although no changes between saline and LPS pre-treated groups were observed on development or expression of locomotor behavioral sensitization to AMPH. Furthermore, there was up-regulation of D1 receptor protein level within striatum in the LPS-stimulated offspring which was strongly correlated with increased grooming behavior. Taken together, our results indicate that motor and dopaminergic alterations caused by maternal immune activation are restricted to the acute AMPH challenge, mostly due to up-regulation of the D1 receptor within the mesolimbic and nigrostriatal pathways, but no locomotor differences were observed for behavioral sensitization to AMPH. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.
Resumo:
Background: Severe dengue virus (DENV) disease is associated with extensive immune activation, characterized by a cytokine storm. Previously, elevated lipopolysaccharide (LPS) levels in dengue were found to correlate with clinical disease severity. In the present cross-sectional study we identified markers of microbial translocation and immune activation, which are associated with severe manifestations of DENV infection. Methods: Serum samples from DENV-infected patients were collected during the outbreak in 2010 in the State of Sa˜o Paulo, Brazil. Levels of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14) and IgM and IgG endotoxin core antibodies were determined by ELISA. Thirty cytokines were quantified using a multiplex luminex system. Patients were classified according to the 2009 WHO classification and the occurrence of plasma leakage/shock and hemorrhage. Moreover, a (non-supervised) cluster analysis based on the expression of the quantified cytokines was applied to identify groups of patients with similar cytokine profiles. Markers of microbial translocation were linked to groups with similar clinical disease severity and clusters with similar cytokine profiles. Results: Cluster analysis indicated that LPS levels were significantly increased in patients with a profound pro-inflammatory cytokine profile. LBP and sCD14 showed significantly increased levels in patients with severe disease in the clinical classification and in patients with severe inflammation in the cluster analysis. With both the clinical classification and the cluster analysis, levels of IL-6, IL-8, sIL-2R, MCP-1, RANTES, HGF, G-CSF and EGF were associated with severe disease. Conclusions: The present study provides evidence that both microbial translocation and extensive immune activation occur during severe DENV infection and may play an important role in the pathogenesis.
Resumo:
Background/Aims: Early life experiences are homeostatic determinants for adult organisms. We evaluated the impact of prenatal immune activation during late gestation on the neuroimmune-endocrine function of adult offspring and its interaction with acute stress. Methods: Pregnant Swiss mice received saline or lipopolysaccharide (LPS) on gestational day 17. Adult male offspring were assigned to the control or restraint stress condition. We analyzed plasmatic corticosterone and catecholamine levels, the monoamine content in the hypothalamus, striatum and frontal cortex, and the sleep-wake cycle before and after acute restraint stress. Results and Conclusion: Offspring from LPS-treated dams had increased baseline norepinephrine levels and potentiated corticosterone secretion after the acute stressor, and no effect was observed on hypothalamic monoamine content or sleep behavior. The offspring of immune-activated dams exhibited impairments in stress-induced serotonergic and dopaminergic alterations in the striatum and frontal cortex. The data demonstrate a distinction between the plasmatic levels of corticosterone in response to acute stress and the hypothalamic monoamine content and sleep patterns. We provide new evidence regarding the influence of immune activation during late gestation on the neuroendocrine homeostasis of offspring.
Resumo:
Developing vaccines to prevent the establishment of HIV infection has been fraught with difficulties. It might therefore be important to consider other new strategies. Since several studies suggest that anti-inflammatory stimuli can protect from HIV infection and because HIV replicates preferably in activated T cells, we suggest here that the reduction of immune activation through a HIV-specific regulatory T-cell vaccine might thwart early viral replication. Thus, because immune activation is a good predictor of disease progression and the immune activation set point has been shown to be an early event during HIV infection, vaccinating to achieve control of early virus-specific immune activation might be advantageous.
Resumo:
Prenatal immune challenge (PIC) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism. Based on this, the goal of this article was to review the main contributions of PIC models, especially the one using the viral-mimetic particle polyriboinosinic-polyribocytidylic acid (poly-I:C), to the understanding of the etiology, biological basis and treatment of schizophrenia. This systematic review consisted of a search of available web databases (PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge) for original studies published in the last 10 years (May 2001 to October 2011) concerning animal models of PIC, focusing on those using poly-I:C. The results showed that the PIC model with poly-I:C is able to mimic the prodrome and both the positive and negative/cognitive dimensions of schizophrenia, depending on the specific gestation time window of the immune challenge. The model resembles the neurobiology and etiology of schizophrenia and has good predictive value. In conclusion, this model is a robust tool for the identification of novel molecular targets during prenatal life, adolescence and adulthood that might contribute to the development of preventive and/or treatment strategies (targeting specific symptoms, i.e., positive or negative/cognitive) for this devastating mental disorder, also presenting biosafety as compared to viral infection models. One limitation of this model is the incapacity to model the full spectrum of immune responses normally induced by viral exposure.
Resumo:
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion'', with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Resumo:
This study evaluated the expression of pattern recognition receptors (PRRs) and activation factors associated with salivary and blood neutrophils from different aged patients diagnosed with Candida-related denture stomatitis (DS). Expression of neutrophil PRRs was determined by flow cytometry and immunofluorescence, and the levels of selected cytokines that influence immune activation were determined by ELISA. The salivary (but not the serum derived) neutrophils of individuals with DS were found to have an increased expression of CD69 regardless of the age of the patient compared to patients without DS. However, these salivary neutrophils had a lower expression of CD66b and CD64. Expression of TLR2 was lower on the salivary-and serum-derived neutrophils from elderly individuals compared to the neutrophils of younger subjects, regardless of whether the individual had DS. Salivary interleukin (IL)-4 was elevated in both of the elderly subject groups (with or without DS). Only elderly DS patients were observed to have increased serum IL-4 levels and reduced salivary IL-12 levels. Younger DS patients showed an increase in salivary IL-10 levels, and both the saliva and the serum levels of IFN-gamma were increased in all of the younger subjects. Our data demonstrated that changes in both the oral immune cells and the protein components could be associated with DS. Furthermore, changes in the blood-derived factors were more associated with age than DS status. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Monocytes have been categorized in three main subpopulations based on CD14 and CD16 surface expression. Classical monocytes express the CD14(++)CD16(-) CCR2(+) phenotype and migrate to inflammatory sites by quickly responding to CCL2 signaling. Here, we identified and characterized the expansion of a novel monocyte subset during HIV and SIV infection, which were undistinguishable from classical monocytes, based on CD14 and CD16 expression, but expressed significantly lower surface CCR2. Transcriptome analysis of sorted cells demonstrated that the CCR2(low/neg) cells are a distinct subpopulation and express lower levels of inflammatory cytokines and activation markers than their CCR2(high) counterparts. They exhibited impaired phagocytosis and greatly diminished chemotaxis in response to CCL2 and CCL7. In addition, these monocytes are refractory to SIV infection and suppress CD8(+) T cell proliferation in vitro. These cells express higher levels of STAT3 and NOS2, suggesting a phenotype similar to monocytic myeloid-derived cells, which suppress expansion of CD8(+) T cells in vivo. They may reflect an antiproliferative response against the extreme immune activation observed during HIV and SIV infections. In addition, they may suppress antiviral responses and thus, have a role in AIDS pathogenesis. Antiretroviral therapy in infected macaque and human subjects caused this population to decline, suggesting that this atypical phenotype is linked to viral replication. J. Leukoc. Biol. 91: 803-816; 2012.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
Pulmonary involvement in leptospirosis has been increasingly reported in the last 20 years, being related to the severity and mortality of the disease. The pathogenesis of pulmonary hemorrhage in leptospirosis is not understood. Lung endothelial cells have been proposed as targets in the pathogenesis of lung involvement in leptospirosis through the activation of Toll-like receptor 2 or the complement system, which stimulates the release of cytokines that lead to the activation of adhesion molecules. The aim of this study was to investigate the involvement of immune pathways and of the intercellular and vascular cell adhesion molecules (intercellular adhesion molecule and vascular cell adhesion molecule, respectively) in the lungs of patients with pulmonary involvement of leptospirosis. We studied the lungs of 18 patients who died of leptospirosis and compared them with 2 groups of controls: normal and noninfectious hemorrhagic lungs. Using immunohistochemistry and image analysis, we quantified the expression of the C3a anaphylatoxin receptor, intercellular adhesion molecule, vascular cell adhesion molecule, and Toll-like receptor 2 in small pulmonary vessels and in the alveolar septa. There was an increased expression of intercellular adhesion molecule (P <.03) and C3a anaphylatoxin receptor (P <.008) in alveolar septa in the leptospirosis group compared with the normal and hemorrhagic controls. In the vessels of the leptospirosis group, there was an increased expression of intercellular adhesion molecule (P=.004), vascular cell adhesion molecule (P=.030), and Toll-like receptor 2 (P=.042) compared with the normal group. Vascular cell adhesion molecule expression in vessels was higher in the leptospirosis group compared with the hemorrhagic group (P=.015). Our results indicate that immune receptors and adhesion molecules participate in the phenomena leading to pulmonary hemorrhage in leptospirosis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Melatonin has been reported to play a fundamental role in T-cell immunoregulation. Control of Trypanosome cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. The aim of this work was to evaluate the influence of exogenous melatonin treatment and the influences exerted by sexual hormones during the acute phase of the experimental Chagas' disease in rats. With melatonin treatment, orchiectomized animals (CMOR and IMOR) displayed the highest concentrations of IFN-gamma and TNF-alpha. On the 7th day post-infection, untreated and treated orchiectomized animals (IOR and IMOR) showed an enhanced number of peritoneal macrophages. Nitric oxide levels were also increased in untreated and treated orchiectomized (IOR and IMOR) when compared to the other groups, with or without LPS. Our data suggest that melatonin therapy associated with orchiectomy induced a stimulating effect on the immune response to the parasite. (c) 2012 Published by Elsevier Ltd.
Resumo:
The innate and adaptive immune responses of dendritic cells (DCs) to enteroinvasive Escherichia coli (EIEC) infection were compared with DC responses to Shigella flexneri infection. EIEC triggered DCs to produce interleukin (IL)-10, IL-12 and tumour necrosis factor (TNF)-alpha, whereas S. flexneri induced only the production of TNF-alpha. Unlike S. flexneri, EIEC strongly increased the expression of toll like receptor (TLR)-4 and TLR-5 in DCs and diminished the expression of co-stimulatory molecules that may cooperate to inhibit CD4(+) T-lymphocyte proliferation. The inflammation elicited by EIEC seems to be related to innate immunity both because of the aforementioned results and because only EIEC were able to stimulate DC transmigration across polarised Caco-2 cell monolayers, a mechanism likely to be associated with the secretion of CC chemokine ligands (CCL) 20 and TNF-alpha. Understanding intestinal DC biology is critical to unravelling the infection strategies of EIEC and may aid in the design of treatments for infectious diseases.
Resumo:
Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.
Resumo:
We evaluated how the mild stress-induced increase in endogenous corticosterone affected the pineal gland in Syrian hamsters (Mesocricetus auratus). The animals were maintained under constant light for 1 day, instead of a cycle of 14:10-h, to increase the circulating corticosterone levels during the daytime. The nuclear translocation of nuclear factor kappa B (NFKB), which is the pivotal transcription factor for stress and injury, presented a daily rhythm in normal animals. NFKB nuclear content increased linearly from the onset of light [Zeitgeber Time 0 (ZT0)] until ZT11 and decreased after ZT12 when the plasma corticosterone peak was detected in normal animals. However, the 24-h profiles of the two curves were different, and they did not clearly support an exclusive relationship between corticosterone levels and NFKB content. Therefore, we tested the effect of increased endogenous corticosterone through inducing mild stress by maintaining daytime illumination for one night. This stressful condition, which increased daytime corticosterone levels, resulted in a daytime decrease in NFKB nuclear content, and this was inhibited by mifepristone. Overall, this study shows that NFKB has a daily rhythm in Syrian hamster pineal glands and, by increasing endogenous corticosterone with a stressful condition, NFKB activity is regulated. Therefore, this study suggests that the pineal gland in the Syrian hamster is a sensor of stressful conditions.