20 resultados para Endothelial sinusoidal cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: Aerobic exercise training has been established as an important nonpharmacological treatment for hypertension. We investigated whether the number and function of endothelial progenitor cells (EPCs) are restored after exercise training, potentially contributing to neovascularization in hypertension. Methods: Twelve-week-old male spontaneously hypertensive rats (SHRs, n = 14) and Wistar Kyoto (WKY, n = 14) rats were assigned to four groups: SHR; trained SHR (SHR-T); WKY; and trained WKY. Exercise training consisted of 10 weeks of swimming. EPC number and function, as well as the vascular endothelial growth factor (VEGF), nitrotyrosine and nitrite concentration in peripheral blood were quantified by fluorescence-activated cell sorter analysis (CD34+/Flk1+ cells), colony-forming unit assay, ELISA and nitric oxide (NO) analyzer, respectively. Soleus capillary/fiber ratio and protein expression of VEGF and endothelial NO synthase (eNOS) by western blot were assessed. Results: Exercise training was effective in reducing blood pressure in SHR-T accompanied by resting bradycardia, an increase in exercise tolerance, peak oxygen uptake (VO2) and citrate synthase activity. In response to hypertension, the amount of peripheral blood-EPC and number of colonies were decreased in comparison with control levels. In contrast, exercise training normalized the EPC levels and function in SHR-T accompanied by an increase in VEGF and NO levels. In addition, oxidative stress levels were normalized in SHR-T. Similar results were found in the number and function of bone marrow EPC. Exercise training repaired the peripheral capillary rarefaction in hypertension by a signaling pathway VEGF/eNOS-dependent in SHR-T. Moreover, improvement in EPC was significantly related to angiogenesis. Conclusion: Our data show that exercise training repairs the impairment of EPC in hypertension, which could be associated with peripheral revascularization, suggesting a mechanism for its potential therapeutic: application in vascular diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sao Paulo Research Foundation [FAPESP/05/57710-3]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G(0)/G(1) phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The National Institute for Clinical Excellence (NICE) guidelines recommend the use of bare-metal stents (BMS) in non-complex lesions with a low risk of restenosis (diameter a parts per thousand yen3 mm and lesion length a parts per thousand currency sign15 mm) and the use of drug-eluting stents (DES) in more complex lesions with a high risk of restenosis (diameter < 3.0 mm or lesion length > 15 mm). However, the guidelines were created based on studies evaluating BMS and DES only. We performed an analysis of patients undergoing non-urgent percutaneous coronary intervention with the novel endothelial cell capturing stent (ECS). The ECS is coated with CD34(+) antibodies that attract circulating endothelial progenitor cells to the stent surface, thereby accelerating the endothelialization of the stented area. We analyzed all patients enrolled in the worldwide e-HEALING registry that met the NICE criteria for either low-risk or high-risk lesions and were treated with a parts per thousand yen1 ECS. The main study outcome was target vessel failure (TVF) at 12-month follow-up, defined as the composite of cardiac death or MI and target vessel revascularization (TVR). A total of 4,241 patients were assessed in the current analysis. At 12-month follow-up, TVF occurred in 7.0% of the patients with low-risk lesions and in 8.8% of the patients with high-risk lesions (p = 0.045). When evaluating the diabetic patients versus the non-diabetic patients per risk group, no significant differences were found in TVF, MI or TVR in either risk group. The ECS shows good clinical outcomes in lesions carrying either a high or a low risk of restenosis according to the NICE guidelines with comparable rates of cardiac death, myocardial infarction, and stent thrombosis. The TVF rate with ECS was slightly higher in patients with high-risk lesions, driven by higher clinically driven TLR. The risk of restenosis with ECS in patients carrying high-risk lesions needs to be carefully considered relative to other risks associated with DES. Furthermore, the presence of diabetes mellitus did not influence the incidence of TVF in either risk group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and beta-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs) harvested on titanium (Ti), using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs) on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Antibodies directed against endothelial cell surface antigens have been described in many disorders and have been associated with disease activity. Since the most prominent histopathologic feature in mixed connective tissue disease (MCTD) is the widespread and unique proliferative vascular lesion, our aim was to evaluate the frequency of anti-endothelial cell antibodies (AECA) in this condition. Objectives: To evaluate the frequency of AECA in this disease and assess its clinical and laboratory associations. Methods: Seventy-three sera from 35 patients with MCTD (Kasukawa's criteria), collected during a 7 year period, were tested for immunoglobulins G and M (IgG and IgM) AECA by cellular ELISA, using HUVEC (human umbilical vein endothelial cells). Sera from 37 patients with systemic lupus erythematosus (SLE), 22 with systemic sclerosis (SSc) and 36 sera from normal healthy individuals were used as controls. A cellular ELISA using HeLa cells was also performed as a laboratory control method. Results: IgG-AECA was detected in 77% of MCTD patients, 54% of SLE patients, 36% of SSc patients and 6% of normal controls. In MCTD, IgG-AECA was associated with vasculitic manifestations, disease activity and lymphopenia, and was also a predictor of constant disease activity. Immunosuppressive drugs were shown to reduce IgG-AECA titers. Since antibodies directed to HeLa cell surface were negative, AECA was apparently unrelated to common epitopes present on epithelial cell lines. Conclusions: AECA are present in a large proportion of patients with MCTD and these antibodies decrease after immunosuppressive treatment. IMAJ 2012; 14:84-87

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. Methods: One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab(US Patent). A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE<0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Results: Bio-Optics: sample size, 97 +/- 22 cells; RE, 6.52 +/- 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 162 +/- 34 cells. CSO: sample size, 110 +/- 20 cells; RE, 5.98 +/- 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 157 +/- 45 cells. Konan: sample size, 80 +/- 27 cells; RE, 10.6 +/- 3.67; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 336 +/- 131 cells. Topcon: sample size, 87 +/- 17 cells; RE, 10.1 +/- 2.52; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 382 +/- 159 cells. Conclusions: A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical evidence has identified the pulmonary circulation as an important target of air pollution. It was previously demonstrated that in vitro exposure to fine particulate matter (aerodynamic diameter <= 2.5 mu m, PM2.5) induces endothelial dysfunction in isolated pulmonary arteries. We aimed to investigate the effects of in vivo exposure to urban concentrated PM2.5 on rat pulmonary artery reactivity and the mechanisms involved. For this, adult Wistar rats were exposed to 2 weeks of concentrated Sao Paulo city air PM2.5 at an accumulated daily dose of approximately 600 mu g/m(3). Pulmonary arteries isolated from PM2.5-exposed animals exhibited impaired endothelium-dependent relaxation to acetylcholine without significant changes in nitric oxide donor response compared to control rats. PM2.5 caused vascular oxidative stress and enhanced protein expression of Cu/Zn- and Mn-superoxide dismutase in the pulmonary artery. Protein expression of endothelial nitric oxide synthase (eNOS) was reduced, while tumor necrosis factor (TNF)-alpha was enhanced by PM2.5 inhalation in pulmonary artery. There was a significant positive correlation between eNOS expression and maximal relaxation response (E-max) to acetylcholine. A negative correlation was found between vascular TNF-alpha expression and E-max to acetylcholine. Plasma cytokine levels, blood cells count and coagulation parameters were similar between control and PM2.5-exposed rats. The present findings showed that in vivo daily exposure to concentrated urban PM2.5 could decrease endothelium-dependent relaxation and eNOS expression on pulmonary arteries associated with local high TNF-alpha level but not systemic pro-inflammatory factors. Taken together, the present results elucidate the mechanisms underlying the trigger of cardiopulmonary diseases induced by urban ambient levels of PM2.5. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objectives were to investigate the possible role of VEGFA in bovine placenta steroid synthesis and to determine whether cloned derived placental cells present similar responses as non-cloned ones. Placental cells from cloned (term) and non-cloned (days 90, 150, 210 and term) pregnancies were isolated and treated with VEGFA (50 ng/ml) for 24, 48 or 96 h. Progesterone (P-4) and estrone sulfate (E1S) were assessed by RIA, while aromatase P450-positive cells were quantified using the point counting test. The percentages of steroidogenic and non-steroidogenic populations were determined by flow cytometry. VEGFA augmented or decreased P-4 and E1S concentrations as well as aromatase P450-positive cell density, depending on gestational age and time in culture. The percentage of steroidogenic cells was lower than that of non-steroidogenic ones for each culture time (P < 0.05). VEGFA treatment did not change the proportion of steroidogenic and non-steroidogenic cells. Placental cells derived from cloned pregnancies presented higher concentrations of E1S and P4 than the non-cloned group. However, aromatase P450-positive cells were similar between groups (P > 0.05). VEGFA treatment altered P-4 and E1S levels in placental cells depending on type of gestation. These results suggest that VEGFA acts locally in the bovine placenta to modulate steroidogenesis during gestation, but in a different pattern between cloned and non-cloned derived placental cells at term. Therefore, this factor can be considered an important regulator of placental development and function. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide (NO) has been pointed out as being the main mediator involved in the hypotension and tissue injury taking place during sepsis. This study aimed to investigate the cellular mechanisms implicated in the acetylcholine (ACh)-induced relaxation detected in aortic rings isolated from rats submitted to cecal ligation and perforation (CLP group), 6 h post-CLP. The mean arterial pressure was recorded, and the concentration-effect curves for ACh were constructed for endothelium-intact aortic rings in the absence (control) or after incubation with one of the following NO synthase inhibitors: L-NAME (non-selective), L-NNA (more selective for eNOS), 7-nitroindazole (more selective for nNOS), or 1400W (selective for iNOS). The NO concentration was determined by using confocal microscopy. The protein expression of the NOS isoforms was quantified by Western blot analysis. The prostacyclin concentration was indirectly analyzed on the basis of 6-keto-prostaglandin F-1 alpha (6-keto-PGF(1 alpha)) levels measured by enzyme immunoassay. There were no differences between Sham- and CLP-operated rats in terms of the relaxation induced by acetylcholine. However, the NOS inhibitors reduced this relaxation in both groups, but this effect remained more pronounced in the CLP group as compared to the Sham group. The acetylcholine-induced NO production was higher in the rat aortic endothelial cells of the CLP group than in those of the Sham group. eNOS protein expression was larger in the CLP group, but the iNOS protein was not verified in any of the groups. The basal 6-keto-PGF(1 alpha) levels were higher in the CLP group, but the acetylcholine-stimulated levels did not increase in CLP as much as they did in the Sham group. Taken together, our results show that the augmented NO production in sepsis syndrome elicited by cecal ligation and perforation is due to eNOS up-regulation and not to iNOS. (C) 2012 Elsevier Inc. All rights reserved.