12 resultados para Empirical Best Linear Unbiased Predictor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which points to some difficulties in the interpretation of such predictors. (C) 2011 Elsevier By. All rights reserved.
Resumo:
We extend the random permutation model to obtain the best linear unbiased estimator of a finite population mean accounting for auxiliary variables under simple random sampling without replacement (SRS) or stratified SRS. The proposed method provides a systematic design-based justification for well-known results involving common estimators derived under minimal assumptions that do not require specification of a functional relationship between the response and the auxiliary variables.
Resumo:
Validity of comparisons between expected breeding values obtained from best linear unbiased prediction procedures in genetic evaluations is dependent on genetic connectedness among herds. Different cattle breeding programmes have their own particular features that distinguish their database structure and can affect connectedness. Thus, the evolution of these programmes can also alter the connectedness measures. This study analysed the evolution of the genetic connectedness measures among Brazilian Nelore cattle herds from 1999 to 2008, using the French Criterion of Admission to the group of Connected Herds (CACO) method, based on coefficients of determination (CD) of contrasts. Genetic connectedness levels were analysed by using simple and multiple regression analyses on herd descriptors to understand their relationship and their temporal trends from the 19992003 to the 20042008 period. The results showed a high level of genetic connectedness, with CACO estimates higher than 0.4 for the majority of them. Evaluation of the last 5-year period showed only a small increase in average CACO measures compared with the first 5 years, from 0.77 to 0.80. The percentage of herds with CACO estimates lower than 0.7 decreased from 27.5% in the first period to 16.2% in the last one. The connectedness measures were correlated with percentage of progeny from connecting sires, and the artificial insemination spread among Brazilian herds in recent years. But changes in connectedness levels were shown to be more complex, and their complete explanation cannot consider only herd descriptors. They involve more comprehensive changes in the relationship matrix, which can be only fully expressed by the CD of contrasts.
Resumo:
In this paper we obtain asymptotic expansions, up to order n(-1/2) and under a sequence of Pitman alternatives, for the nonnull distribution functions of the likelihood ratio, Wald, score and gradient test statistics in the class of symmetric linear regression models. This is a wide class of models which encompasses the t model and several other symmetric distributions with longer-than normal tails. The asymptotic distributions of all four statistics are obtained for testing a subset of regression parameters. Furthermore, in order to compare the finite-sample performance of these tests in this class of models, Monte Carlo simulations are presented. An empirical application to a real data set is considered for illustrative purposes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Although linear growth during childhood may be affected by early-life exposures, few studies have examined whether the effects of these exposures linger on during school age, particularly in low-and middle-income countries. Methods: We conducted a population-based longitudinal study of 256 children living in the Brazilian Amazon, aged 0.1 y to 5.5 y in 2003. Data regarding socioeconomic and maternal characteristics, infant feeding practices, morbidities, and birth weight and length were collected at baseline of the study (2003). Child body length/height was measured at baseline and at follow-up visits (in 2007 and 2009). Restricted cubic splines were used to construct average height-for-age Z score (HAZ) growth curves, yielding estimated HAZ differences among exposure categories at ages 0.5 y, 1 y, 2 y, 5 y, 7 y, and 10 y. Results: At baseline, median age was 2.6 y (interquartile range, 1.4 y-3.8 y), and mean HAZ was -0.53 (standard deviation, 1.15); 10.2% of children were stunted. In multivariable analysis, children in households above the household wealth index median were 0.30 Z taller at age 5 y (P = 0.017), and children whose families owned land were 0.34 Z taller by age 10 y (P = 0.023), when compared with poorer children. Mothers in the highest tertile for height had children whose HAZ were significantly higher compared with those of children from mothers in the lowest height tertile at all ages. Birth weight and length were positively related to linear growth throughout childhood; by age 10 y, children weighing >3500 g at birth were 0.31 Z taller than those weighing 2501 g to 3500 g (P = 0.022) at birth, and children measuring >= 51 cm at birth were 0.51 Z taller than those measuring <= 48 cm (P = 0.005). Conclusions: Results suggest socioeconomic background is a potentially modifiable predictor of linear growth during the school-aged years. Maternal height and child's anthropometric characteristics at birth are positively associated with HAZ up until child age 10 y.
Resumo:
A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.
Resumo:
Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]
Resumo:
We analyzed the effectiveness of linear short- and long-term variability time domain parameters, an index of sympatho-vagal balance (SDNN/RMSSD) and entropy in differentiating fetal heart rate patterns (fHRPs) on the fetal heart rate (fHR) series of 5, 3 and 2 min duration reconstructed from 46 fetal magnetocardiograms. Gestational age (GA) varied from 21 to 38 weeks. FHRPs were classified based on the fHR standard deviation. In sleep states, we observed that vagal influence increased with GA, and entropy significantly increased (decreased) with GA (SDNN/RMSSD), demonstrating that a prevalence of vagal activity with autonomous nervous system maturation may be associated with increased sleep state complexity. In active wakefulness, we observed a significant negative (positive) correlation of short-term (long-term) variability parameters with SDNN/RMSSD. ANOVA statistics demonstrated that long-term irregularity and standard deviation of normal-to-normal beat intervals (SDNN) best differentiated among fHRPs. Our results confirm that short-and long-term variability parameters are useful to differentiate between quiet and active states, and that entropy improves the characterization of sleep states. All measures differentiated fHRPs more effectively on very short HR series, as a result of the fMCG high temporal resolution and of the intrinsic timescales of the events that originate the different fHRPs.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
Abstract Background Decreased heart rate variability (HRV) is related to higher morbidity and mortality. In this study we evaluated the linear and nonlinear indices of the HRV in stable angina patients submitted to coronary angiography. Methods We studied 77 unselected patients for elective coronary angiography, which were divided into two groups: coronary artery disease (CAD) and non-CAD groups. For analysis of HRV indices, HRV was recorded beat by beat with the volunteers in the supine position for 40 minutes. We analyzed the linear indices in the time (SDNN [standard deviation of normal to normal], NN50 [total number of adjacent RR intervals with a difference of duration greater than 50ms] and RMSSD [root-mean square of differences]) and frequency domains ultra-low frequency (ULF) ≤ 0,003 Hz, very low frequency (VLF) 0,003 – 0,04 Hz, low frequency (LF) (0.04–0.15 Hz), and high frequency (HF) (0.15–0.40 Hz) as well as the ratio between LF and HF components (LF/HF). In relation to the nonlinear indices we evaluated SD1, SD2, SD1/SD2, approximate entropy (−ApEn), α1, α2, Lyapunov Exponent, Hurst Exponent, autocorrelation and dimension correlation. The definition of the cutoff point of the variables for predictive tests was obtained by the Receiver Operating Characteristic curve (ROC). The area under the ROC curve was calculated by the extended trapezoidal rule, assuming as relevant areas under the curve ≥ 0.650. Results Coronary arterial disease patients presented reduced values of SDNN, RMSSD, NN50, HF, SD1, SD2 and -ApEn. HF ≤ 66 ms2, RMSSD ≤ 23.9 ms, ApEn ≤−0.296 and NN50 ≤ 16 presented the best discriminatory power for the presence of significant coronary obstruction. Conclusion We suggest the use of Heart Rate Variability Analysis in linear and nonlinear domains, for prognostic purposes in patients with stable angina pectoris, in view of their overall impairment.
Resumo:
Dasyatis guttata has been target of artisanal fisheries in the coast of Bahia (Northeast Brazil) mainly by “arraieira” (gillnet) and “grozeira” (bottom long-line), but until now there is no stock assessment study. One of the important data for this knowledge is reliable indices of abundance. The aims of the present work are to: (1) estimate the best predictor for relative abundance (catch-per-unit-of-effort, CPUE), examining whether catch (production – kg) was related to: soak time of the gear, size of the gillnet or number of hooks, applying generalized linear model (GLM); (2) estimate the annual CPUE (kg/hooks and kg/m) averaged by gear; and (3) assess the temporal CPUE variance. Based on monthly sampling between January 2012 and January 2013, 222 landings by grozeira and 76 by arraiaiera were recorded in the two landing sites in Todos os Santos Bay, Bahia. A total of 14,550 kg (average = 44 kg/month) of D. guttata was captured. Models for both gears were highly significant (P < 0.0001). The analysis indicated that the most appropriate variable for CPUE analysis was the size of the gillnet (P < 0.001) and the number of hooks (P < 0.0001). Soak time of the gear was not significant for both gears (P = 0.4). High residual deviance expresses the complexity of the relations between ecosystem factors and other fisheries factors affecting relative abundance, which were not considered in this study. The average CPUE by grozeira was 6.39 kg/100 hooks ± 8.89 and by arraieira, 1.47 kg/100 m ± 1.66 over the year. Kruskal-Wallis test showed effect of the month on the mean grozeira CPUE (P = <0.001), but no effect (P = 0.096) on the mean arraieira CPUE. Grozeira CPUE values were highest in December and March, and lowest between May to August
Resumo:
Background: Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. Objectives: To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. Methods: 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. Results: The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Conclusion: Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.