13 resultados para Edge histogram descriptor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we address the "skull-stripping" problem in 3D MR images. We propose a new method that employs an efficient and unique histogram analysis. A fundamental component of this analysis is an algorithm for partitioning a histogram based on the position of the maximum deviation from a Gaussian fit. In our experiments we use a comprehensive image database, including both synthetic and real MRI. and compare our method with other two well-known methods, namely BSE and BET. For all datasets we achieved superior results. Our method is also highly independent of parameter tuning and very robust across considerable variations of noise ratio.
Resumo:
We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20-100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (vertical bar E vertical bar(max)) when excited at 514 nm, the Au nanocubes displayed higher vertical bar E vertical bar(max) values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in vertical bar E vertical bar(max) as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.
Resumo:
Let k and l be positive integers. With a graph G, we associate the quantity c(k,l)(G), the number of k-colourings of the edge set of G with no monochromatic matching of size l. Consider the function c(k,l) : N --> N given by c(k,l)(n) = max {c(k,l)(G): vertical bar V(G)vertical bar = n}, the maximum of c(k,l)(G) over all graphs G on n vertices. In this paper, we determine c(k,l)(n) and the corresponding extremal graphs for all large n and all fixed values of k and l.
Resumo:
Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.
Resumo:
Ultrasonography has an inherent noise pattern, called speckle, which is known to hamper object recognition for both humans and computers. Speckle noise is produced by the mutual interference of a set of scattered wavefronts. Depending on the phase of the wavefronts, the interference may be constructive or destructive, which results in brighter or darker pixels, respectively. We propose a filter that minimizes noise fluctuation while simultaneously preserving local gray level information. It is based on steps to attenuate the destructive and constructive interference present in ultrasound images. This filter, called interference-based speckle filter followed by anisotropic diffusion (ISFAD), was developed to remove speckle texture from B-mode ultrasound images, while preserving the edges and the gray level of the region. The ISFAD performance was compared with 10 other filters. The evaluation was based on their application to images simulated by Field II (developed by Jensen et al.) and the proposed filter presented the greatest structural similarity, 0.95. Functional improvement of the segmentation task was also measured, comparing rates of true positive, false positive and accuracy. Using three different segmentation techniques, ISFAD also presented the best accuracy rate (greater than 90% for structures with well-defined borders). (E-mail: fernando.okara@gmail.com) (C) 2012 World Federation for Ultrasound in Medicine & Biology.
Resumo:
The environmental factors that contribute to the development of autoimmune diseases are largely unknown. Endemic pemphigus foliaceus in humans, known as Fogo Selvagem (FS) in Brazil, is mediated by pathogenic IgG4 autoantibodies against desmoglein 1 (Dsg1). Clusters of FS overlap with those of leishmaniasis, a disease transmitted by sand fly (Lutzomyia longipalpis) bites. In this study, we show that salivary Ags from the sand fly, and specifically the LJM11 salivary protein, are recognized by FS Abs. Anti-Dsg1 monoclonal autoantibodies derived from FS patients also cross-react with LJM11. Mice immunized with LJM11 generate anti-Dsg1 Abs. Thus, insect bites may deliver salivary Ags that initiate a cross-reactive IgG4 Ab response in genetically susceptible individuals and lead to subsequent FS. Our findings establish a clear relationship between an environmental, noninfectious Ag and the development of potentially pathogenic autoantibodies in an autoimmune disease. The Journal of Immunology, 2012, 189: 1535-1539.
Resumo:
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfven Bresillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high mHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. (C) 2011 Published by Elsevier B.V.
Resumo:
Purpose: To evaluate if the Breast Imaging Reporting and Data System (BI-RADS) ultrasound descriptor of orientation can be used in magnetic resonance imaging (MRI). Materials and Methods: We conducted a retrospective study to evaluate breast mass lesions identified by MRI from 2008 to 2010 who had ultrasound (US) and histopathologic confirmation. Lesions were measured in the craniocaudal (CC), anteroposterior (AP), and transverse (T) axes and classified as having a nonparallel orientation, longest axis perpendicular to Cooper's ligaments, or in a parallel orientation when the longest axis is parallel to Cooper's ligaments. The MR image data were correlated with the US orientation according to BI-RADS and histopathological diagnosis. Results: We evaluated 71 lesions in 64 patients. On MRI, 27 lesions (38.0%) were nonparallel (8 benign and 19 malignant), and 44 lesions (62.0%) were parallel (33 benign and 11 malignant). There was significant agreement between the lesion orientation on US and MRI (kappa value = 0.901). The positive predictive values (PPV) for parallel orientation malignancy on MR and US imaging were 70.4% and 73.1%, respectively. Conclusion: A descriptor of orientation for breast lesions can be used on MRI with PPV for malignant lesions similar to US. J. Magn. Reson. Imaging 2012; 36:13831388. (C) 2012 Wiley Periodicals, Inc.
Resumo:
This Letter reports an investigation on the optical properties of copper nanocubes as a function of size as modeled by the discrete dipole approximation. In the far-field, our results showed that the extinction resonances shifted from 595 to 670 nm as the size increased from 20 to 100 nm. Also, the highest optical efficiencies for absorption and scattering were obtained for nanocubes that were 60 and 100 nm in size, respectively. In the near-field, the electric-field amplitudes were investigated considering 514, 633 and 785 nm as the excitation wavelengths. The E-fields increased with size, being the highest at 633 nm. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The effects of edge covalent functionalization on the structural, electronic, and optical properties of elongated armchair graphene nanoflakes (AGNFs) are analyzed in detail for a wide range of terminations, within the framework of Hartree-Fock-based semiempirical methods. The chemical features of the functional groups, their distribution, and the resulting system symmetry are identified as the key factors that determine the modification of strutural and optoelectronic features. While the electronic gap is always reduced in the presence of substituents, functionalization-induced distortions contribute to the observed lowering by about 35-55% This effect is paired with a red shift of the first optical peak, corresponding to about 75% of the total optical gap reduction. Further, the functionalization pattern and the specific features of the edge-substituent bond are found to influence the strength and the character of the low-energy excitations. All of these effects are discussed for flakes of different widths, representing the three families of AGNFs.
Resumo:
Texture image analysis is an important field of investigation that has attracted the attention from computer vision community in the last decades. In this paper, a novel approach for texture image analysis is proposed by using a combination of graph theory and partially self-avoiding deterministic walks. From the image, we build a regular graph where each vertex represents a pixel and it is connected to neighboring pixels (pixels whose spatial distance is less than a given radius). Transformations on the regular graph are applied to emphasize different image features. To characterize the transformed graphs, partially self-avoiding deterministic walks are performed to compose the feature vector. Experimental results on three databases indicate that the proposed method significantly improves correct classification rate compared to the state-of-the-art, e.g. from 89.37% (original tourist walk) to 94.32% on the Brodatz database, from 84.86% (Gabor filter) to 85.07% on the Vistex database and from 92.60% (original tourist walk) to 98.00% on the plant leaves database. In view of these results, it is expected that this method could provide good results in other applications such as texture synthesis and texture segmentation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present paper, we solve a twist symplectic map for the action of an ergodic magnetic limiter in a large aspect-ratio tokamak. In this model, we study the bifurcation scenarios that occur in the remnants regular islands that co-exist with chaotic magnetic surfaces. The onset of atypical local bifurcations created by secondary shearless tori are identified through numerical profiles of internal rotation number and we observe that their rupture can reduce the usual magnetic field line escape at the tokamak plasma edge.
Resumo:
Ordered mesoporous ZrO2-CeO2 mixed oxides are potential candidates for catalytic applications. These systems, used as anodes in solid oxide fuel cells (SOFC), may lead to better performance of SOFCs, due to an enhancement on surface area, aiming to achieve a lower working temperature. The aim of this studies is to evaluate the reduction capacity of Ni2+ to Ni in ZrO2-x(mol)%CeO2 (x=50 and 90) samples impregnated with 60(wt.)%NiO. The synthesis was made with Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH to adjust the pH (3-4) and a teflon autoclave to perform a hydrothermal treatment (80oC/48h). The samples were dried and calcined, until 540oC in N2 and 4 hours in air. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)£6H2O. The powder was calcinated in air until 350oC for 2 hours. Temperature-resolved XANES data at the Ni K-edge were collected at the DXAS beam line of the LNLS in transmission mode, using a Si(111) monochromator and a CCD detector. Sample preparation consisted of mixing »6mg of the powder samples with boron nitride and pressing into pellets. The data were acquired during an experiment of temperature programmed reduction (TPR) under a 5% H2/He until 600oC and mixtures of 20%CH4:5%O2/He, at temperatures from 400 to 600oC. All the reactions were monitored with a mass spectrometer. The data was analyzed with a linear combination fit of 2 standards for each valence number using Athena software. The Ni K-edge experiments demonstrated that for both contents of CeO2, NiO embedded in the porous zirconia-ceria matrix reduces at lower temperatures than pure NiO, revealing that the ZrO2-CeO2 support improves the reduction of impregnated NiO. Ni was oxidized to NiO after all reactions with methane and oxygen. Hydrogenated carbonaceous species were detected, but under reducing conditions, the hydrocarbon compounds are removed. The reaction of total oxidation of methane CH4:O2 (1:2 ratio) was observed at lower temperatures (around 400oC) for both samples.