3 resultados para Drain-tiles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper proposes a drain current model for triple-gate n-type junctionless nanowire transistors. The model is based on the solution of the Poisson equation. First, the 2-D Poisson equation is used to obtain the effective surface potential for long-channel devices, which is used to calculate the charge density along the channel and the drain current. The solution of the 3-D Laplace equation is added to the 2-D model in order to account for the short-channel effects. The proposed model is validated using 3-D TCAD simulations where the drain current and its derivatives, the potential, and the charge density have been compared, showing a good agreement for all parameters. Experimental data of short- channel devices down to 30 nm at different temperatures have been also used to validate the model.
Resumo:
Background and objectives: Longitudinal, prospective, randomized, blinded Trial to assess the influence of pleural drain (non-toxic PVC) site of insertion on lung function and postoperative pain of patients undergoing coronary artery bypass grafting in the first three days post-surgery and immediately after chest tube removal. Method: Thirty six patients scheduled for elective myocardial revascularization with cardiopulmonary bypass (CPB) were randomly allocated into two groups: SX group (subxiphoid) and IC group (intercostal drain). Spirometry, arterial blood gases, and pain tests were recorded. Results: Thirty one patients were selected, 16 in SX group and 15 in IC group. Postoperative (PO) spirometric values were higher in SX than in IC group (p < 0.05), showing less influence of pleural drain location on breathing. PaO2 on the second PO increased significantly in SX group compared with IC group (p < 0.0188). The intensity of pain before and after spirometry was lower in SX group than in IC group (p < 0.005). Spirometric values were significantly increased in both groups after chest tube removal. Conclusion: Drain with insertion in the subxiphoid region causes less change in lung function and discomfort, allowing better recovery of respiratory parameters.
Resumo:
The floating-body-RAM sense margin and retention-time dependence on the gate length is investigated in UTBOX devices using BJT programming combined with a positive back bias (so-called V th feedback). It is shown that the sense margin and the retention time can be kept constant versus the gate length by using a positive back bias. Nevertheless, below a critical L, there is no room for optimization, and the memory performances suddenly drop. The mechanism behind this degradation is attributed to GIDL current amplification by the lateral bipolar transistor with a narrow base. The gate length can be further scaled using underlap junctions.